Some properties of the entropy in the natural time

被引:126
|
作者
Varotsos, PA [1 ]
Sarlis, NV
Tanaka, HK
Skordas, ES
机构
[1] Univ Athens, Dept Phys, Solid State Sect, Athens 15784, Greece
[2] Univ Athens, Dept Phys, Solid Earth Phys Inst, Athens 15784, Greece
[3] Tokai Univ, Earth Predict Res Ctr, Shizuoka 4248610, Japan
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 03期
关键词
D O I
10.1103/PhysRevE.71.032102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that the entropy S, defined as S equivalent to <chi ln chi >-<chi > ln <chi > [Phys. Rev. E 68, 031106 (2003)] where chi stands for the natural time [Phys. Rev. E 66, 011902 (2002)], exhibits positivity and concavity as well as stability or experimental robustness. Furthermore, the distinction between the seismic electric signal activities and "artificial" noises, based on the classification of their S values, is lost when studying the time-reversed signals. This reveals the profound importance of considering the (true) time arrow.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Entropy in the natural time domain
    Varotsos, PA
    Sarlis, NV
    Skordas, ES
    Lazaridou, MS
    PHYSICAL REVIEW E, 2004, 70 (01):
  • [2] SOME PROPERTIES OF THE EXPONENTIAL ENTROPY
    PAL, NR
    PAL, SK
    INFORMATION SCIENCES, 1992, 66 (1-2) : 119 - 137
  • [3] Some properties of Renyi entropy and Renyi entropy rate
    Golshani, Leila
    Pasha, Einollah
    Yari, Gholamhossein
    INFORMATION SCIENCES, 2009, 179 (14) : 2426 - 2433
  • [4] Some properties of ADK entropy and ADK entropy rate
    Khodabin, Morteza
    WORLD CONFERENCE ON INFORMATION TECHNOLOGY (WCIT-2010), 2011, 3
  • [5] Entropy of geoelectrical time series in the natural time domain
    Ramirez-Rojas, A.
    Telesca, L.
    Angulo-Brown, F.
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2011, 11 (01) : 219 - 225
  • [6] SOME PROPERTIES ON TOPOLOGICAL-ENTROPY
    ZHOU, ZL
    KEXUE TONGBAO, 1983, 28 (06): : 855 - 855
  • [7] Some properties of past entropy and their applications
    Nanda, Asok K.
    Paul, Prasanta
    METRIKA, 2006, 64 (01) : 47 - 61
  • [8] Definition and some Properties of Information Entropy
    Zhang, Bo
    Nakamura, Yatsuka
    FORMALIZED MATHEMATICS, 2007, 15 (03): : 111 - 119
  • [9] Some Properties of Fractal Tsallis Entropy
    Preda, Vasile
    Sfetcu, Razvan-Cornel
    FRACTAL AND FRACTIONAL, 2023, 7 (05)
  • [10] Some properties of positive entropy maps
    Arbieto, A.
    Morales, C. A.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 : 765 - 776