A SPACE-TIME FINITE-ELEMENT METHOD FOR THE WAVE-EQUATION

被引:59
|
作者
FRENCH, DA
机构
[1] Department of Mathematical Sciences, University of Cincinnati, Cincinnati
关键词
D O I
10.1016/0045-7825(93)90172-T
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A numerical method is introduced which uses finite elements in time and space simultaneously to solve the wave equation. An error analysis for this scheme is presented and the results of several computations. This scheme is accurate for time slabs of arbitrary thickness without introducing extra least squares or stabilization terms.
引用
收藏
页码:145 / 157
页数:13
相关论文
共 50 条
  • [21] A MIXED FINITE-ELEMENT FORMULATION FOR THE BOUNDARY CONTROLLABILITY OF THE WAVE-EQUATION
    GLOWINSKI, R
    KINTON, W
    WHEELER, MF
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1989, 27 (03) : 623 - 635
  • [22] AN ANALYSIS OF THE WAVE-EQUATION MODEL FOR FINITE-ELEMENT TIDAL COMPUTATIONS
    FOREMAN, MGG
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 52 (02) : 290 - 312
  • [23] Finite element method for space-time fractional diffusion equation
    Feng, L. B.
    Zhuang, P.
    Liu, F.
    Turner, I.
    Gu, Y. T.
    [J]. NUMERICAL ALGORITHMS, 2016, 72 (03) : 749 - 767
  • [24] AN UNCONDITIONALLY STABLE FINITE-ELEMENT TIME-DOMAIN SOLUTION OF THE VECTOR WAVE-EQUATION
    GEDNEY, SD
    NAVSARIWALA, U
    [J]. IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1995, 5 (10): : 332 - 334
  • [25] Finite element method for space-time fractional diffusion equation
    L. B. Feng
    P. Zhuang
    F. Liu
    I. Turner
    Y. T. Gu
    [J]. Numerical Algorithms, 2016, 72 : 749 - 767
  • [26] A space-time finite element method for fractional wave problems
    Binjie Li
    Hao Luo
    Xiaoping Xie
    [J]. Numerical Algorithms, 2020, 85 : 1095 - 1121
  • [27] A space-time finite element method for fractional wave problems
    Li, Binjie
    Luo, Hao
    Xie, Xiaoping
    [J]. NUMERICAL ALGORITHMS, 2020, 85 (03) : 1095 - 1121
  • [28] A space-time continuous finite element method for 2D viscoelastic wave equation
    Hong Li
    Zhihui Zhao
    Zhendong Luo
    [J]. Boundary Value Problems, 2016
  • [29] OPTIMAL MANEUVER OF A FLEXIBLE ARM BY SPACE-TIME FINITE-ELEMENT METHOD
    BENTAL, A
    BARYOSEPH, P
    FLASHNER, H
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1995, 18 (06) : 1459 - 1462
  • [30] ON THE SOLUTION OF DIFFUSION CONVECTION EQUATIONS BY THE SPACE-TIME FINITE-ELEMENT METHOD
    YU, JR
    HSU, TR
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1986, 23 (05) : 737 - 750