A new three-parameter lifetime distribution

被引:0
|
作者
Abd El-Bar, Ahmed M. T. [1 ]
Ragab, I. E. [1 ]
机构
[1] Tanta Univ, Dept Math, Fac Sci, Tanta, Egypt
关键词
Weibull distribution; WE; hazard rate function; mean residual life function; maximum likelihood estimation; MLE; information matrix;
D O I
10.1504/IJCSM.2017.10008271
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we introduce a three-parameter distribution called the Weibull exponential (WE) distribution which offers a more flexible model for lifetime data. We show that the hazard rate of the new model can be increasing, decreasing and bathtub shaped. A comprehensive mathematical treatment of the WE distribution is provided. We give closed-form expressions for the density, hazard rate, moments, quantile function, mean residual life function, mean deviations, Bonferroni and Lorenz curves. We also derive the density of order statistic. Moreover, we discuss estimation by the maximum likelihood and obtain an expression for the observed information matrix. Furthermore, simulation results on maximum likelihood estimation are presented. Two real data sets are used to assess the performance of the new model among some classical distributions.
引用
下载
收藏
页码:309 / 326
页数:18
相关论文
共 50 条
  • [11] Easy estimation by a new parameterization for the three-parameter lognormal distribution
    Komori, Y
    Hirose, H
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (01) : 63 - 74
  • [12] Moments of the three-parameter Fermi distribution
    Zhang, L.
    Gao, Y.
    Zheng, H.
    Huang, M. R.
    Liu, X.
    MODERN PHYSICS LETTERS A, 2017, 32 (36)
  • [13] On three-parameter generalized exponential distribution
    Basu, Suparna
    Kundu, Debasis
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 53 (12) : 6222 - 6236
  • [14] Inference on the high-reliability lifetime estimation based on the three-parameter Weibull distribution
    Yang, Xiaoyu
    Xie, Liyang
    Wang, Bowen
    Chen, Jianpeng
    Zhao, Bingfeng
    PROBABILISTIC ENGINEERING MECHANICS, 2024, 77
  • [15] A consistent parameter estimation in the three-parameter lognormal distribution
    Nagatsuka, Hideki
    Balakrishnan, N.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (07) : 2071 - 2086
  • [16] PARAMETER ESTIMATION OF THREE-PARAMETER WEIBULL DISTRIBUTION.
    Mimaki, Toshitaro
    Yanagimoto, Samon
    Takashima, Hironori
    Nippon Steel Technical Report, 1987, (32): : 18 - 23
  • [17] A New Three-Parameter Inverse Weibull Distribution with Medical and Engineering Applications
    Alotaibi, Refah
    Okasha, Hassan
    Rezk, Hoda
    Nassar, Mazen
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 135 (02): : 1255 - 1274
  • [18] A three-parameter generalized von Mises distribution
    Sungsu Kim
    Ashis SenGupta
    Statistical Papers, 2013, 54 : 685 - 693
  • [19] Monitoring reliability for a three-parameter Weibull distribution
    Sueruecue, Baris
    Sazak, Hakan S.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2009, 94 (02) : 503 - 508
  • [20] Variant modification of three-parameter gamma distribution
    V. F. Zalesskii
    Hydrotechnical Construction, 1997, 31 (4) : 25 - 29