Easy estimation by a new parameterization for the three-parameter lognormal distribution

被引:5
|
作者
Komori, Y [1 ]
Hirose, H [1 ]
机构
[1] Kyushu Inst Technol, Dept Control Engn & Sci, Iizuka, Fukuoka 8208502, Japan
关键词
extended lognormal distribution; dimension reduction; primary relative maximum; local maximum likelihood estimate; embedded problem;
D O I
10.1080/0094965031000104341
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new parameterization and algorithm are proposed for seeking the primary relative maximum of the likelihood function in the three-parameter lognormal distribution. The parameterization yields the dimension reduction of the three-parameter estimation problem to a two-parameter estimation problem on the basis of an extended lognormal distribution. The algorithm provides the way of seeking the profile of an object function in the two-parameter estimation problem. It is simple and numerically stable because it is constructed on the basis of the bisection method. The profile clearly and easily shows whether a primary relative maximum exists or not, and also gives a primary relative maximum certainly if it exists.
引用
收藏
页码:63 / 74
页数:12
相关论文
共 50 条
  • [1] Parameter Estimation in a Three-Parameter Lognormal Distribution
    Kozlov V.D.
    Maysuradze A.I.
    [J]. Computational Mathematics and Modeling, 2019, 30 (3) : 302 - 310
  • [2] A consistent parameter estimation in the three-parameter lognormal distribution
    Nagatsuka, Hideki
    Balakrishnan, N.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (07) : 2071 - 2086
  • [3] Discussion on approximated estimation method of the three-parameter lognormal distribution
    Li, Mengwen
    Mao, Jingwen
    Zhan, Mingguo
    Ye, Huishou
    Guo, Baojian
    Chai, Fengmei
    Xu, Qinghong
    [J]. Mineral Deposit Research: Meeting the Global Challenge, Vols 1 and 2, 2005, : 1475 - 1478
  • [4] Estimation for the three-parameter lognormal distribution based on progressively censored data
    Basak, Prasanta
    Basak, Indrani
    Balakrishnan, N.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (10) : 3580 - 3592
  • [5] Tests of fit for the three-parameter lognormal distribution
    Chen, C
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (06) : 1418 - 1440
  • [6] Two Probability Plots of the Three-Parameter Lognormal Distribution
    蒋仁言
    [J]. Journal of Donghua University(English Edition), 2014, 31 (06) : 757 - 759
  • [7] Parameter and quantile estimation for the three-parameter lognormal distribution based on statistics invariant to unknown location
    Nagatsuka, Hideki
    Balakrishnan, N.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (09) : 1629 - 1647
  • [8] Two probability plots of the three-parameter lognormal distribution
    Jiang, Ren-Yan
    [J]. Journal of Donghua University (English Edition), 2014, 31 (06) : 757 - 759
  • [9] Statistical inference about the location parameter of the three-parameter lognormal distribution
    Chen, Zhenmin
    [J]. THIRTEENTH ISSAT INTERNATIONAL CONFERENCE ON RELIABILITY AND QUALITY IN DESIGN, PROCEEDINGS, 2007, : 22 - +
  • [10] Application of three-parameter lognormal distribution in EM data analysis
    Li, Baozhen
    Yashchin, Emmanuel
    Christiansen, Cathryn
    Gill, Jason
    Filippi, Ronald
    Sullivan, Timothy
    [J]. MICROELECTRONICS RELIABILITY, 2006, 46 (12) : 2049 - 2055