A CONVERGENCE ANALYSIS OF THE LANDWEBER ITERATION FOR NONLINEAR ILL-POSED PROBLEMS

被引:432
|
作者
HANKE, M
NEUBAUER, A
SCHERZER, O
机构
[1] Institut für Mathematik, Johannes-Kepler-Universität, Linz
关键词
D O I
10.1007/s002110050158
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that the Landweber iteration is a stable method for solving nonlinear ill-posed problems. For perturbed data with noise level delta we propose a stopping rule that yields the convergence rate O(delta(1/2)) under appropriate conditions. We illustrate these conditions for a few examples.
引用
收藏
页码:21 / 37
页数:17
相关论文
共 50 条
  • [21] An entropic Landweber method for linear ill-posed problems
    Burger, M.
    Resmerita, E.
    Benning, M.
    INVERSE PROBLEMS, 2020, 36 (01)
  • [22] An entropic Landweber method for linear ill-posed problems
    Burger, M.
    Resmerita, E.
    Benning, M.
    1600, IOP Publishing Ltd (36):
  • [23] R-K type Landweber method for nonlinear ill-posed problems
    Li, L.
    Han, B.
    Wang, W.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (01) : 341 - 357
  • [24] Bouligand–Landweber iteration for a non-smooth ill-posed problem
    Christian Clason
    Vu Huu Nhu
    Numerische Mathematik, 2019, 142 : 789 - 832
  • [25] Multiscale Compression Algorithm for Solving Nonlinear Ill-Posed Integral Equations via Landweber Iteration
    Zhang, Rong
    Li, Fanchun
    Luo, Xingjun
    MATHEMATICS, 2020, 8 (02)
  • [26] Fast multilevel iteration methods for solving nonlinear ill-posed problems
    Yang, Suhua
    Luo, Xingjun
    Zhang, Rong
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2023, 31 (05): : 781 - 798
  • [27] ON THE CONVERGENCE OF STOCHASTIC GRADIENT DESCENT FOR NONLINEAR ILL-POSED PROBLEMS
    Jin, Bangti
    Zhou, Zehui
    Zou, Jun
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (02) : 1421 - 1450
  • [28] Iteration methods with perturbations in ill-posed problems
    Veretennikov, AY
    Schock, E
    AUTOMATION AND REMOTE CONTROL, 1997, 58 (04) : 579 - 587
  • [29] An implicit Landweber method for nonlinear ill-posed operator equations
    Wang, Wei
    Han, Bo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 230 (02) : 607 - 613
  • [30] Bouligand-Landweber iteration for a non-smooth ill-posed problem
    Clason, Christian
    Vu Huu Nhu
    NUMERISCHE MATHEMATIK, 2019, 142 (04) : 789 - 832