Multiscale Compression Algorithm for Solving Nonlinear Ill-Posed Integral Equations via Landweber Iteration

被引:5
|
作者
Zhang, Rong [1 ,2 ]
Li, Fanchun [3 ]
Luo, Xingjun [4 ]
机构
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Peoples R China
[2] Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Jiangxi Coll Appl Technol, Sch Social Management, Ganzhou 341000, Peoples R China
[4] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear ill-posed integral equations; Landweber iteration; multiscale Galerkin method; generalized discrepancy principle; convergence rates; POSTERIORI PARAMETER CHOICE; TIKHONOV REGULARIZATION; SCHEME;
D O I
10.3390/math8020221
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, Landweber iteration with a relaxation factor is proposed to solve nonlinear ill-posed integral equations. A compression multiscale Galerkin method that retains the properties of the Landweber iteration is used to discretize the Landweber iteration. This method leads to the optimal convergence rates under certain conditions. As a consequence, we propose a multiscale compression algorithm to solve nonlinear ill-posed integral equations. Finally, the theoretical analysis is verified by numerical results.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A Simplified Landweber Iteration for Solving Nonlinear Ill-Posed Problems
    Jose J.
    Rajan M.P.
    [J]. International Journal of Applied and Computational Mathematics, 2017, 3 (Suppl 1) : 1001 - 1018
  • [2] A discrete scheme of Landweber iteration for solving nonlinear ill-posed problems
    Jin, QN
    Amato, U
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 253 (01) : 187 - 203
  • [3] Frozen Landweber Iteration for Nonlinear Ill-Posed Problems
    J. Xu
    B. Han
    L. Li
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2007, 23 : 329 - 336
  • [4] Frozen Landweber Iteration for Nonlinear Ill-Posed Problems
    J.Xu
    B.Han
    L.Li
    [J]. Acta Mathematicae Applicatae Sinica, 2007, (02) : 329 - 336
  • [5] Frozen landweber iteration for nonlinear ill-posed problems
    Xu, J.
    Han, B.
    Li, L.
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2007, 23 (02): : 329 - 336
  • [6] A compressive Landweber iteration for solving ill-posed inverse problems
    Ramlau, R.
    Teschke, G.
    Zhariy, M.
    [J]. INVERSE PROBLEMS, 2008, 24 (06)
  • [7] A CONVERGENCE ANALYSIS OF THE LANDWEBER ITERATION FOR NONLINEAR ILL-POSED PROBLEMS
    HANKE, M
    NEUBAUER, A
    SCHERZER, O
    [J]. NUMERISCHE MATHEMATIK, 1995, 72 (01) : 21 - 37
  • [8] On Landweber iteration for nonlinear ill-posed problems in Hilbert scales
    Neubauer, A
    [J]. NUMERISCHE MATHEMATIK, 2000, 85 (02) : 309 - 328
  • [9] On Landweber iteration for nonlinear ill-posed problems in Hilbert scales
    Andreas Neubauer
    [J]. Numerische Mathematik, 2000, 85 : 309 - 328
  • [10] Adaptive multilevel iteration methods for solving ill-posed integral equations via a coupled system
    Zhang, Rong
    Luo, Xingjun
    Hu, Wenyu
    Zhou, Duanmei
    [J]. INVERSE PROBLEMS, 2021, 37 (09)