A CONVERGENCE ANALYSIS OF THE LANDWEBER ITERATION FOR NONLINEAR ILL-POSED PROBLEMS

被引:432
|
作者
HANKE, M
NEUBAUER, A
SCHERZER, O
机构
[1] Institut für Mathematik, Johannes-Kepler-Universität, Linz
关键词
D O I
10.1007/s002110050158
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that the Landweber iteration is a stable method for solving nonlinear ill-posed problems. For perturbed data with noise level delta we propose a stopping rule that yields the convergence rate O(delta(1/2)) under appropriate conditions. We illustrate these conditions for a few examples.
引用
收藏
页码:21 / 37
页数:17
相关论文
共 50 条
  • [1] Frozen Landweber Iteration for Nonlinear Ill-Posed Problems
    J. Xu
    B. Han
    L. Li
    Acta Mathematicae Applicatae Sinica, English Series, 2007, 23 : 329 - 336
  • [2] Frozen Landweber Iteration for Nonlinear Ill-Posed Problems
    J.Xu
    B.Han
    L.Li
    Acta Mathematicae Applicatae Sinica, 2007, (02) : 329 - 336
  • [3] Frozen landweber iteration for nonlinear ill-posed problems
    Xu, J.
    Han, B.
    Li, L.
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2007, 23 (02): : 329 - 336
  • [4] A Simplified Landweber Iteration for Solving Nonlinear Ill-Posed Problems
    Jose J.
    Rajan M.P.
    International Journal of Applied and Computational Mathematics, 2017, 3 (Suppl 1) : 1001 - 1018
  • [5] On Landweber iteration for nonlinear ill-posed problems in Hilbert scales
    Neubauer, A
    NUMERISCHE MATHEMATIK, 2000, 85 (02) : 309 - 328
  • [6] On Landweber iteration for nonlinear ill-posed problems in Hilbert scales
    Andreas Neubauer
    Numerische Mathematik, 2000, 85 : 309 - 328
  • [7] A discrete scheme of Landweber iteration for solving nonlinear ill-posed problems
    Jin, QN
    Amato, U
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 253 (01) : 187 - 203
  • [8] On the regular landweber iteration for nonlinear ill-posed problems in banach spaces
    Li, Jing
    Liu, Zhen-Hai
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2009, 36 (07): : 89 - 92
  • [9] A convergence analysis of the exponential Euler iteration for nonlinear ill-posed problems
    Hochbruck, Marlis
    Hoenig, Michael
    Ostermann, Alexander
    INVERSE PROBLEMS, 2009, 25 (07)
  • [10] Some generalizations for Landweber iteration for nonlinear ill-posed problems in Hilbert scales
    Neubauer, Andreas
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2016, 24 (04): : 393 - 406