Optical biopsy technique for detection of aganglionosis in Hirschsprung disease by Raman spectroscopy combined with deep learning

被引:0
|
作者
Matsumoto, Yuki [1 ]
Ogawa, Katsuhiro [2 ]
Tamura, Kai [1 ]
Yagi, Rena [1 ]
Onishi, Shun [3 ]
Ieiri, Satoshi [3 ]
Etoh, Tsuyoshi [2 ]
Inomata, Masafumi [2 ]
Katagiri, Takashi [1 ]
Oshima, Yusuke [1 ,2 ]
机构
[1] Univ Toyama, Computat Biophoton Lab, 3190 Gofuku, Toyama, Toyama 9308555, Japan
[2] Oita Univ, Dept Gastroenterol & Pediat Surg, Fac Med, 1-1 Hasama, Yufu City, Oita 8795593, Japan
[3] Kagoshima Univ, Dept Pediat Surg, Res Field Med & Hlth Sci, Med & Dent Area,Res & Educ Assembly, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 8908544, Japan
关键词
Raman spectroscopy; Hirschsprung's disease; enteric nervous system; machine learning;
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this study, we aimed to develop a new optical biopsy technique for aganglionosis of Hirschsprung disease (HSCR) and we then evaluated a custom designed Raman optical biopsy system combined with deep learning based on convolutional neural networks (CNNs). Surgical specimens of formalin-fixed tissue of HSCR patients were subjected to this study. In the result, we achieved more than 90% classification accuracy between the normal and the lesion segments in mucosa. This study shows that CNN is useful for discriminating Raman spectra of the human gastrointestinal wall.
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Surface-enhanced Raman spectroscopy liquid biopsy: an emerging technique for the early screening of Alzheimer's disease
    Qi, Chuang
    Wan, Yu
    Zhao, Xiangwei
    JOURNAL OF TRANSLATIONAL MEDICINE, 2024, 22 (01)
  • [42] Combined spatial frequency spectroscopy analysis with visible resonance Raman for optical biopsy of human brain metastases of lung cancers
    Zhou, Yan
    Liu, Cheng-Hui
    Pu, Yang
    Wu, Binlin
    Thien An Nguyen
    Cheng, Gangge
    Zhou, Lixin
    Zhu, Ke
    Chen, Jun
    Li, Qingbo
    Alfano, Robert R.
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2019, 12 (02)
  • [43] Optical switch combined Raman spectroscopy for rapid SERS measurements
    Lee, Seung-Jin
    Lee, Jae-Sang
    Choi, Young-Wan
    Choi, Woo June
    MULTISCALE IMAGING AND SPECTROSCOPY IV, 2023, 12363
  • [44] Raman spectroscopy combined with machine learning algorithms for rapid detection Primary Sjo?gren?s syndrome associated with interstitial lung disease
    Wu, Xue
    Chen, Chen
    Chen, Xiaomei
    Luo, Cainan
    Lv, Xiaoyi
    Shi, Yamei
    Yang, Jie
    Meng, Xinyan
    Chen, Cheng
    Su, Jinmei
    Wu, Lijun
    PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, 2022, 40
  • [45] In vivo detection of Hirschsprung's disease by optical coherence tomography in rats
    Xiong, H. L.
    Guo, Z. Y.
    Li, S. X.
    Li, N.
    Liu, S. H.
    Ji, Y. H.
    PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (05): : 1549 - 1561
  • [46] Wall or machine suction rectal biopsy for Hirschsprung’s disease: a simple modified technique can improve the adequacy of biopsy
    A. E. Ali
    J. A. Morecroft
    J. C. Bowen
    J. Bruce
    A. Morabito
    Pediatric Surgery International, 2006, 22 : 681 - 682
  • [47] Wall or machine suction rectal biopsy for Hirschsprung's disease: a simple modified technique can improve the adequacy of biopsy
    Ali, A. E.
    Morecroft, J. A.
    Bowen, J. C.
    Bruce, J.
    Morabito, A.
    PEDIATRIC SURGERY INTERNATIONAL, 2006, 22 (08) : 681 - 682
  • [48] Raman spectroscopy combined with machine learning for the quantification of explosives in mixtures
    Akash Kumar Tarai
    Manoj Kumar Gundawar
    Journal of Optics, 2024, 53 : 1382 - 1390
  • [49] Raman spectroscopy combined with machine learning for the quantification of explosives in mixtures
    Tarai, Akash Kumar
    Gundawar, Manoj Kumar
    JOURNAL OF OPTICS-INDIA, 2024, 53 (02): : 1382 - 1390
  • [50] Analysis of handmade paper by Raman spectroscopy combined with machine learning
    Yan, Chunsheng
    Cheng, Zhongyi
    Luo, Si
    Huang, Chen
    Han, Songtao
    Han, Xiuli
    Du, Yuandong
    Ying, Chaonan
    JOURNAL OF RAMAN SPECTROSCOPY, 2022, 53 (02) : 260 - 271