Optical biopsy technique for detection of aganglionosis in Hirschsprung disease by Raman spectroscopy combined with deep learning

被引:0
|
作者
Matsumoto, Yuki [1 ]
Ogawa, Katsuhiro [2 ]
Tamura, Kai [1 ]
Yagi, Rena [1 ]
Onishi, Shun [3 ]
Ieiri, Satoshi [3 ]
Etoh, Tsuyoshi [2 ]
Inomata, Masafumi [2 ]
Katagiri, Takashi [1 ]
Oshima, Yusuke [1 ,2 ]
机构
[1] Univ Toyama, Computat Biophoton Lab, 3190 Gofuku, Toyama, Toyama 9308555, Japan
[2] Oita Univ, Dept Gastroenterol & Pediat Surg, Fac Med, 1-1 Hasama, Yufu City, Oita 8795593, Japan
[3] Kagoshima Univ, Dept Pediat Surg, Res Field Med & Hlth Sci, Med & Dent Area,Res & Educ Assembly, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima 8908544, Japan
关键词
Raman spectroscopy; Hirschsprung's disease; enteric nervous system; machine learning;
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this study, we aimed to develop a new optical biopsy technique for aganglionosis of Hirschsprung disease (HSCR) and we then evaluated a custom designed Raman optical biopsy system combined with deep learning based on convolutional neural networks (CNNs). Surgical specimens of formalin-fixed tissue of HSCR patients were subjected to this study. In the result, we achieved more than 90% classification accuracy between the normal and the lesion segments in mucosa. This study shows that CNN is useful for discriminating Raman spectra of the human gastrointestinal wall.
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Optical cup and disc segmentation using deep learning technique for glaucoma detection
    Parkhi, Priya
    Hambarde, Bhagyashree
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2023, 14 (01): : 44 - 52
  • [32] Fast detection of cumin and fennel using NIR spectroscopy combined with deep learning algorithms
    Chen, Cheng
    Yang, Bo
    Si, Rumeng
    Chen, Chen
    Chen, Fangfang
    Gao, Rui
    Li, Yizhe
    Tang, Jun
    Lv, Xiaoyi
    OPTIK, 2021, 242
  • [33] Rapid diagnosis of membranous nephropathy based on serum and urine Raman spectroscopy combined with deep learning methods
    Zhang, Xueqin
    Song, Xue
    Li, Wenjing
    Chen, Cheng
    Wusiman, Miriban
    Zhang, Li
    Zhang, Jiahui
    Lu, Jinyu
    Lu, Chen
    Lv, Xiaoyi
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [34] Rapid diagnosis of membranous nephropathy based on serum and urine Raman spectroscopy combined with deep learning methods
    Xueqin Zhang
    Xue Song
    Wenjing Li
    Cheng Chen
    Miriban Wusiman
    Li Zhang
    Jiahui Zhang
    Jinyu Lu
    Chen Lu
    Xiaoyi Lv
    Scientific Reports, 13
  • [35] Deep Learning Applied to Raman Spectroscopy for the Detection of Microsatellite Instability/MMR Deficient Colorectal Cancer
    Blake, Nathan
    Gaifulina, Riana
    Griffin, Lewis D.
    Bell, Ian M.
    Rodriguez-Justo, Manuel
    Thomas, Geraint M. H.
    CANCERS, 2023, 15 (06)
  • [36] Detection of Oral Fluid Stains on Fabric via Solution Extraction Combined with Deep Ultraviolet Raman Spectroscopy
    Weber, Alexis
    Amin, Mohamed O.
    Ermolenkov, Vladimir
    Al-Hetlani, Entesar
    Lednev, Igor K.
    ANALYTICAL CHEMISTRY, 2025, 97 (07) : 3864 - 3871
  • [37] Brain Metastasis Detection by Resonant Raman Optical Biopsy Method
    Zhou, Yan
    Liu, Cheng-hui
    Cheng, Gangge
    Zhou, Lixin
    Zhang, Chunyuan
    Pu, Yang
    Li, Zhongwu
    Liu, Yulong
    Li, Qingbo
    Wang, Wei
    Alfano, Robert R.
    OPTICAL BIOPSY XII, 2014, 8940
  • [38] Combined Deep Learning and SOR Detection Technique for High Reliability in Massive MIMO Systems
    Jang, Jun-Yong
    Park, Chan-Yeob
    Shin, Beom-Sik
    Song, Hyoung-Kyu
    IEEE ACCESS, 2021, 9 : 148976 - 148987
  • [39] Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce
    Zhou, Xin
    Jun, Sun
    Yan, Tian
    Bing, Lu
    Hang, Yingying
    Quansheng, Chen
    FOOD CHEMISTRY, 2020, 321
  • [40] Label-free detection of human enteric nerve system using Raman spectroscopy: A pilot study for diagnosis of Hirschsprung disease
    Ogawa, Katsuhiro
    Oshima, Yusuke
    Etoh, Tsuyoshi
    Kaisyakuji, Yushi
    Tojigamori, Manabu
    Ohno, Yasuharu
    Shiraishi, Norio
    Inomata, Masafumi
    JOURNAL OF PEDIATRIC SURGERY, 2021, 56 (07) : 1150 - 1156