Nonlinear Integrable Couplings of the Kaup-Newell Hierarchy

被引:0
|
作者
Wei, Xiaoli [1 ]
Zhang, Jiao [2 ]
机构
[1] Liaoning Shihua Univ, Coll Sci, Fushun, Peoples R China
[2] Shenyang Inst Engn, Dept Basic Sci, Shenyang, Peoples R China
关键词
power line communication; Lie algebra; soliton equation; zero curvature equations; KN hierarchy; nonlinear integrable couplings;
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this paper; a six-dimensional Lie algebra is first introduced, whose corresponding loop algebra is constructed, for which an isospectral problem is established. By zero curvature equations, we obtain the nonlinear integrable couplings of the Kaup-Newell (KN) hierarchy.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 50 条
  • [41] The exact solutions for the non-isospectral Kaup-Newell hierarchy via the inverse scattering transform
    Zhang, Hongyi
    Zhang, Yufeng
    Feng, Binlu
    Afzal, Faiza
    APPLIED MATHEMATICS LETTERS, 2024, 152
  • [42] SPECIAL TOPIC-Nonlinear system theory and its frontier applications Higher dimensional reciprocal integrable Kaup-Newell systems
    Lou, Sen-Yue
    Hao, Xia-Zhi
    Jia, Man
    ACTA PHYSICA SINICA, 2023, 72 (10)
  • [43] A multi-component matrix loop algebra and the multi-component Kaup-Newell (KN) hierarchy, as well as its integrable coupling system
    Yuan, Wei
    Zhang, Yufeng
    Chao, Yue
    CHAOS SOLITONS & FRACTALS, 2007, 31 (02) : 473 - 479
  • [44] Bifurcations and traveling wave solitons in optical fibers with the nonlinear Kaup-Newell system
    Tang, Lu
    OPTIK, 2023, 279
  • [45] A deformed reduced semi-discrete Kaup-Newell equation, the related integrable family and Darboux transformation
    Xu, Xi-Xiang
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 251 : 275 - 283
  • [46] Non-isospectral integrable couplings of Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy with self-consistent sources
    于发军
    李丽
    Chinese Physics B, 2008, 17 (11) : 3965 - 3973
  • [47] Non-isospectral integrable couplings of Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy with self-consistent sources
    Yu Fa-Jun
    Li Li
    CHINESE PHYSICS B, 2008, 17 (11) : 3965 - 3973
  • [48] DECOMPOSITION AND STRAIGHTENING OUT OF THE DISCRETE KAUP-NEWELL FLOWS
    Geng, Xianguo
    Su, Ting
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (32): : 4513 - 4531
  • [49] Chirped envelope optical solitons for Kaup-Newell equation
    Triki, Houria
    Biswas, Anjan
    Zhou, Qin
    Moshokoa, Seithuti P.
    Belic, Milivoj
    OPTIK, 2019, 177 : 1 - 7
  • [50] Analytical and numerical treatments for the Kaup-Newell dynamical equation
    Al Qarni, A. A.
    Alshaery, A. A.
    Bakodah, H. O.
    Banaja, M. A.
    Mohammed, A. S. H. F.
    RESULTS IN PHYSICS, 2020, 19