Nonlinear Integrable Couplings of the Kaup-Newell Hierarchy

被引:0
|
作者
Wei, Xiaoli [1 ]
Zhang, Jiao [2 ]
机构
[1] Liaoning Shihua Univ, Coll Sci, Fushun, Peoples R China
[2] Shenyang Inst Engn, Dept Basic Sci, Shenyang, Peoples R China
关键词
power line communication; Lie algebra; soliton equation; zero curvature equations; KN hierarchy; nonlinear integrable couplings;
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this paper; a six-dimensional Lie algebra is first introduced, whose corresponding loop algebra is constructed, for which an isospectral problem is established. By zero curvature equations, we obtain the nonlinear integrable couplings of the Kaup-Newell (KN) hierarchy.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 50 条
  • [31] A NEW COMPLETELY INTEGRABLE LIOUVILLES SYSTEM PRODUCED BY THE KAUP-NEWELL EIGENVALUE PROBLEM
    QIAO, ZJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (07) : 3110 - 3120
  • [32] Nonlinear integrable couplings of a generalized super Ablowitz-Kaup-Newell-Segur hierarchy and its super bi-Hamiltonian structures
    Hu, Beibei
    Ma, Wen-Xiu
    Xia, Tiecheng
    Zhang, Ling
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (04) : 1565 - 1577
  • [33] Binary non-linearization of Lax pairs of Kaup-Newell soliton hierarchy
    Ma, WX
    Ding, Q
    Zhang, WG
    Lu, BQ
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1996, 111 (09): : 1135 - 1149
  • [34] Bi-integrable couplings and tri-integrable couplings of the modified Ablowitz-Kaup-Newell-Segur hierarchy with self-consistent sources
    He, Baiying
    Chen, Liangyun
    Cao, Yan
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (01)
  • [35] Two integrable couplings of a generalized D-Kaup-Newell hierarchy and their Hamiltonian and bi-Hamiltonian structures
    McAnally, Morgan
    Ma, Wen-Xiu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 191 (191)
  • [36] The Super Kaup-Newell Soliton Hierarchy and its Super-Hamiltonian Structure
    Zhu, Li-Li
    Yang, Hong-Xiang
    Chen, Lan-Xin
    CHINESE JOURNAL OF PHYSICS, 2010, 48 (06) : 719 - 727
  • [37] Variational principle for the Kaup-Newell system
    Wu, Yue
    He, Ji-Huan
    JOURNAL OF COMPUTATIONAL APPLIED MECHANICS, 2023, 54 (03): : 405 - 409
  • [39] Kaup-Newell族的换位表示
    李忠定
    数学物理学报, 1992, (01) : 68 - 74
  • [40] Conservation laws of a perturbed Kaup-Newell equation
    Yang, Jing-Yun
    Ma, Wen-Xiu
    MODERN PHYSICS LETTERS B, 2016, 30 (32-33):