A METHOD FOR SPATIOTEMPORAL (4-D) DATA REPRESENTATION IN CONFOCAL MICROSCOPY - APPLICATION TO NEUROANATOMICAL PLASTICITY

被引:11
|
作者
KRIETE, A [1 ]
WAGNER, HJ [1 ]
机构
[1] UNIV MARBURG,INST ANAT & ZELLBIOL,W-3550 MARBURG,GERMANY
来源
关键词
CONFOCAL MICROSCOPY; RETINA; 3-DIMENSIONAL RECONSTRUCTION; 4-DIMENSIONAL VISUALIZATION; NEUROANATOMY; SYNAPTIC PLASTICITY;
D O I
10.1111/j.1365-2818.1993.tb03275.x
中图分类号
TH742 [显微镜];
学科分类号
摘要
This paper describes a new method for data representation and visualization in four dimensions (three dimensions plus time). Sequential volumes, exhibiting morphological activity, are acquired non-invasively with a confocal scanning laser microscope, where each data set corresponds to a time sample. A pipelined processing includes packing of volumes and specific volume rendering techniques. Subsequent processing in HIS (hue, intensity, saturation) colour space combines functional, packed images with shaded three-dimensional views. As a result, even subtle changes in morphology become visible and computational time is saved. Experimental findings obtained from investigations of synaptic plasticity in cultured retinal tissue are reported.
引用
收藏
页码:27 / 31
页数:5
相关论文
共 50 条
  • [21] Spatiotemporal Processing for Remote Sensing of Trapped Victims Using 4-D Imaging Radar
    Li, Zhi
    Jin, Tian
    Li, Lianlin
    Dai, Yongpeng
    Song, Yongping
    Song, Yongkun
    Zhou, Xiaolong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [22] Video Denoising, Deblocking, and Enhancement Through Separable 4-D Nonlocal Spatiotemporal Transforms
    Maggioni, Matteo
    Boracchi, Giacomo
    Foi, Alessandro
    Egiazarian, Karen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (09) : 3952 - 3966
  • [23] New data-driven method from 3D confocal microscopy for calculating phytoplankton cell biovolume
    Roselli, L.
    Paparella, F.
    Stanca, E.
    Basset, A.
    JOURNAL OF MICROSCOPY, 2015, 258 (03) : 200 - 211
  • [24] Application of the 4-D XCAT Phantoms in Biomedical Imaging and Beyond
    Segars, W. Paul
    Tsui, B. M. W.
    Cai, Jing
    Yin, Fang-Fang
    Fung, George S. K.
    Samei, Ehsan
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (03) : 680 - 692
  • [25] Four-color, 4-D time-lapse confocal imaging of chick embryos
    Teddy, JM
    Lansford, R
    Kulesa, PM
    BIOTECHNIQUES, 2005, 39 (05) : 703 - 710
  • [26] COMPUTER-GENERATED IMAGERY FOR 4-D METEOROLOGICAL DATA
    HIBBARD, WL
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1986, 67 (11) : 1362 - 1369
  • [27] A 4-D Trajectory Prediction Model Based on Radar Data
    Wu Kun
    Pan Wei
    Proceedings of the 27th Chinese Control Conference, Vol 6, 2008, : 591 - 594
  • [28] 4-D imaging of fluid flow with digital in-line holographic microscopy
    Garcia-Sucerquia, J.
    Xu, W.
    Jericho, S. K.
    Jericho, M. H.
    Kreuzer, H. J.
    OPTIK, 2008, 119 (09): : 419 - 423
  • [29] Foliage Penetration by using 4-D Point Cloud Data
    Rodriguez, Javier Mendez
    Sanchez-Reyes, Pedro J.
    Cruz-Rivera, Sol M.
    LASER RADAR TECHNOLOGY AND APPLICATIONS XVII, 2012, 8379
  • [30] Application of a new tight-binding total energy method to 4-d transition metals and compounds
    Papaconstantopoulos, DA
    Mehl, MJ
    Akdim, B
    PROPERTIES OF COMPLEX INORGANIC SOLIDS, 1997, : 253 - 259