ON THE EIGENVALUES OF A 2 x 2 BLOCK OPERATOR MATRIX

被引:4
|
作者
Muminov, Mukhiddin I. [1 ]
Rasulov, Tulkin H. [2 ]
机构
[1] UTM, Fac Sci, Skudai 81310, Johor Bahru, Malaysia
[2] Bukhara State Univ, Fac Math & Phys, Bukhara 200100, Uzbekistan
关键词
block operator matrix; Fock space; discrete and essential spectra; Birman-Schwinger principle; the Efimov effect; discrete spectrum asymptotics; embedded eigenvalues;
D O I
10.7494/OpMath.2015.35.3.371
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A 2 x 2 block operator matrix H acting in the direct sum of one- and two-particle subspaces of a Fock space is considered. The existence of infinitely many negative eigenvalues of H-22 (the second diagonal entry of H) is proved for the case where both of the associated Friedrichs models have a zero energy resonance. For the number N (z) of eigenvalues of H-22 lying below z < 0; the following asymptotics is found lim(z ->-0) N (z) vertical bar log vertical bar z vertical bar vertical bar (1) = U-0 (0 < U-0 < infinity). Under some natural conditions the infiniteness of the number of eigenvalues located respectively inside, in the gap, and below the bottom of the essential spectrum of H is proved.
引用
收藏
页码:371 / 395
页数:25
相关论文
共 50 条
  • [41] ANALYTIC SEMIGROUPS GENERATED BY AN OPERATOR MATRIX IN L2(Ω) x L2(Ω)
    Badraoui, Salah
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [42] The existence and representation of the Drazin inverse of a 2 x 2 block matrix over a ring
    Zou, Honglin
    Mosic, Dijana
    Chen, Jianlong
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (11)
  • [43] On the Eigenvalues of a Polyharmonic Matrix Operator Near Diffraction Planes
    Karakilic, Sedef
    Akduman, Setenay
    SEVENTH INTERNATIONAL CONFERENCE ON NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2020), 2021, 2321
  • [44] LEFT EIGENVALUES OF 2 x 2 SYMPLECTIC MATRICES
    Macias-Virgos, E.
    Pereira-Saez, M. J.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 : 274 - 280
  • [45] 2 x 2 hypergeometric operators with diagonal eigenvalues
    Calderon, C.
    Gonzalez, Y.
    Pacharoni, I.
    Simondi, S.
    Zurrian, I.
    JOURNAL OF APPROXIMATION THEORY, 2019, 248
  • [46] Overlap Dirac operator, eigenvalues and random matrix theory
    Edwards, RG
    Heller, UM
    Kiskis, J
    Narayanan, R
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 446 - 448
  • [47] On the absence of eigenvalues of a periodic matrix Schrodinger operator in a layer
    Suslina, TA
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2001, 8 (04) : 463 - 486
  • [48] Exponentially accurate semiclassical asymptotics of low-lying eigenvalues for 2 x 2 matrix Schrodinger operators
    Hagedorn, GA
    Toloza, JH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 312 (01) : 300 - 329
  • [49] EIGENVALUES OF 2-TRIDIAGONAL TOEPLITZ MATRIX
    Borowska, Jolanta
    Lacinska, Lena
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2015, 14 (04) : 11 - 17
  • [50] On the eigenvalues of Redheefer's matrix .2.
    Vaughan, RC
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 60 : 260 - 273