ON THE EIGENVALUES OF A 2 x 2 BLOCK OPERATOR MATRIX

被引:4
|
作者
Muminov, Mukhiddin I. [1 ]
Rasulov, Tulkin H. [2 ]
机构
[1] UTM, Fac Sci, Skudai 81310, Johor Bahru, Malaysia
[2] Bukhara State Univ, Fac Math & Phys, Bukhara 200100, Uzbekistan
关键词
block operator matrix; Fock space; discrete and essential spectra; Birman-Schwinger principle; the Efimov effect; discrete spectrum asymptotics; embedded eigenvalues;
D O I
10.7494/OpMath.2015.35.3.371
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A 2 x 2 block operator matrix H acting in the direct sum of one- and two-particle subspaces of a Fock space is considered. The existence of infinitely many negative eigenvalues of H-22 (the second diagonal entry of H) is proved for the case where both of the associated Friedrichs models have a zero energy resonance. For the number N (z) of eigenvalues of H-22 lying below z < 0; the following asymptotics is found lim(z ->-0) N (z) vertical bar log vertical bar z vertical bar vertical bar (1) = U-0 (0 < U-0 < infinity). Under some natural conditions the infiniteness of the number of eigenvalues located respectively inside, in the gap, and below the bottom of the essential spectrum of H is proved.
引用
收藏
页码:371 / 395
页数:25
相关论文
共 50 条
  • [31] Operator interpretation of resonances arising in spectral problems for 2 x 2 matrix Hamiltonians
    Motovilov, AK
    Mennicken, R
    MATHEMATICAL RESULTS IN QUANTUM MECHANICS, 1999, 108 : 315 - 322
  • [33] Analysis of the spectrum of a 2 x 2 operator matrix. Discrete spectrum asymptotics
    Rasulov, T. H.
    Dilmurodov, E. B.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2020, 11 (02): : 138 - 144
  • [34] Bounds for the extreme eigenvalues of block 2 × 2 Hermitian matrices
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2005, 129 (2) : 3772 - 3786
  • [35] REPRESENTATIONS OF THE MOORE-PENROSE INVERSE OF 2 X 2 BLOCK OPERATOR VALUED MATRICES
    Deng, Chun Yuan
    Du, Hong Ke
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (06) : 1139 - 1150
  • [36] Block basis property of a class of 2 x 2 operator matrices and its application to elasticity
    Song Kuan
    Hou Guo-Lin
    Alatancang
    CHINESE PHYSICS B, 2013, 22 (09)
  • [37] Eigenvalues of (-Δ + R/2) on manifolds with nonnegative curvature operator
    Cao, Xiaodong
    MATHEMATISCHE ANNALEN, 2007, 337 (02) : 435 - 441
  • [38] ON 2 x 2 OPERATOR MATRICES
    Jung, Sungeun
    Kim, Yoenha
    Ko, Eungil
    OPERATORS AND MATRICES, 2011, 5 (03): : 365 - 388
  • [39] Completing a 2 x 2 Block Matrix of Real Quaternions with a Partial Specified Inverse
    Lin, Yong
    Wang, Qing-Wen
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [40] Power Bounds for the Numerical Radius of the Off-Diagonal 2 x 2 Operator Matrix
    Altwaijry, Najla
    Dragomir, Silvestru Sever
    Feki, Kais
    SYMMETRY-BASEL, 2024, 16 (09):