ON THE EIGENVALUES OF A 2 x 2 BLOCK OPERATOR MATRIX

被引:4
|
作者
Muminov, Mukhiddin I. [1 ]
Rasulov, Tulkin H. [2 ]
机构
[1] UTM, Fac Sci, Skudai 81310, Johor Bahru, Malaysia
[2] Bukhara State Univ, Fac Math & Phys, Bukhara 200100, Uzbekistan
关键词
block operator matrix; Fock space; discrete and essential spectra; Birman-Schwinger principle; the Efimov effect; discrete spectrum asymptotics; embedded eigenvalues;
D O I
10.7494/OpMath.2015.35.3.371
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A 2 x 2 block operator matrix H acting in the direct sum of one- and two-particle subspaces of a Fock space is considered. The existence of infinitely many negative eigenvalues of H-22 (the second diagonal entry of H) is proved for the case where both of the associated Friedrichs models have a zero energy resonance. For the number N (z) of eigenvalues of H-22 lying below z < 0; the following asymptotics is found lim(z ->-0) N (z) vertical bar log vertical bar z vertical bar vertical bar (1) = U-0 (0 < U-0 < infinity). Under some natural conditions the infiniteness of the number of eigenvalues located respectively inside, in the gap, and below the bottom of the essential spectrum of H is proved.
引用
收藏
页码:371 / 395
页数:25
相关论文
共 50 条
  • [1] Extended eigenvalues of 2 x 2 block operator matrices
    Ammar, Aymen
    Boutaf, Fatima Zohra
    Jeribi, Aref
    FILOMAT, 2023, 37 (05) : 1377 - 1389
  • [2] The canonical correlations of a 2x2 block matrix with given eigenvalues
    Drury, SW
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 354 (1-3) : 103 - 117
  • [3] INFINITENESS OF THE NUMBER OF EIGENVALUES EMBEDDED IN THE ESSENTIAL SPECTRUM OF A 2 x 2 OPERATOR MATRIX
    Muminov, M. I.
    Rasulov, T. H.
    EURASIAN MATHEMATICAL JOURNAL, 2014, 5 (02): : 60 - 77
  • [4] B-essential spectra of 2 x 2 block operator matrix pencils
    Abdmouleh, Faical
    Bahloul, Aymen
    Walha, Ines
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (02) : 161 - 172
  • [5] Solvability of a 2 x 2 Block Operator Matrix of Chandrasekhar Type on a Bananch Algebra
    Hashem, H. H. G.
    FILOMAT, 2017, 31 (16) : 5169 - 5175
  • [6] EIGENVALUES AND VIRTUAL LEVELS OF A FAMILY OF 2 x 2 OPERATOR MATRICES
    Rasulov, Tulkin H.
    Dilmurodov, Elyor B.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2019, 25 (03): : 273 - 281
  • [7] Representations for the Drazin inverse of 2 x 2 block-operator matrix with singular Schur complement
    Deng, Chunyuan
    Wei, Yimin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (11) : 2766 - 2783
  • [8] A note on eigenvalues of perturbed 2x2 block Hermitian matrices
    Cheng, Guang-Hui
    Tan, Qin
    Wang, Zhuan-De
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (04): : 820 - 825
  • [9] ON THE NUMBER OF EIGENVALUES OF A MATRIX OPERATOR
    Rasulov, T. Kh.
    SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (02) : 316 - 328
  • [10] Exponential decay of 2 x 2 operator matrix semigroups
    Bátkai, A
    Engel, KJ
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2004, 6 (02) : 153 - 163