BALANCED GRAPHS WITH MINIMUM DEGREE CONSTRAINTS

被引:3
|
作者
SHEEHAN, J
机构
[1] Department of Mathematics, University of Aberdeen, Aberdeen, AB9 2TY, Dunbar Street
关键词
D O I
10.1016/0012-365X(92)90123-W
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite simple graph on n vertices with minimum degree-delta = delta(G) (n = delta (mod 2)). Suppose that 0 less-than-or-equal-to delta less-than-or-equal-to n - 2, 0 less-than-or-equal-to i less-than-or-equal-to [1/2-delta]. A partition (X, Y) of V(G) is said to be an (i, delta)-partition of G if: (i) absolute value of X = [1/2n] + i, absolute value of Y = [1/2n] - i, (ii) delta([X]) greater-than-or-equal-to [1/2-delta] + i, delta([Y]) greater-than-or-equal-to [1/2-delta] - i. We prove that if G is connected then G possesses an (i, delta)-partition for some i, 0 less-than-or-equal-to i less-than-or-equal-to [1/2-delta] - 1. We show that this result is sharp and provide a family of counterexamples to Conjecture 5 in Sheehan (1988).
引用
收藏
页码:307 / 314
页数:8
相关论文
共 50 条
  • [41] Restrcited domination in graphs with minimum degree 2
    Henning, Michael A.
    DISCRETE MATHEMATICS, 2007, 307 (11-12) : 1356 - 1366
  • [42] Edge coloring graphs with large minimum degree
    Plantholt, Michael J.
    Shan, Songling
    JOURNAL OF GRAPH THEORY, 2023, 102 (04) : 611 - 632
  • [43] Total domination in graphs with minimum degree three
    Favaron, O
    Henning, MA
    Mynhart, CM
    Puech, J
    JOURNAL OF GRAPH THEORY, 2000, 34 (01) : 9 - 19
  • [44] DOMINATION NUMBER OF GRAPHS WITH MINIMUM DEGREE FIVE
    Bujtas, Csilla
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (03) : 763 - 777
  • [45] Diameter of orientations of graphs with given minimum degree
    Bau, Sheng
    Dankelmann, Peter
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 49 : 126 - 133
  • [46] On minimum balanced bipartitions of triangle-free graphs
    Li, Haiyan
    Liang, Yanting
    Liu, Muhuo
    Xu, Baogang
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (03) : 557 - 566
  • [47] Independent sets in graphs with given minimum degree
    Alexander, James
    Cutler, Jonathan
    Mink, Tim
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (03):
  • [48] Uniquely Hamiltonian Graphs of Minimum Degree 4
    Fleischner, Herbert
    JOURNAL OF GRAPH THEORY, 2014, 75 (02) : 167 - 177
  • [49] The positive minimum degree game on sparse graphs
    Balogh, Jozsef
    Pluhar, Andras
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [50] Domination number in graphs with minimum degree two
    Er Fang Shan
    Moo Young Sohn
    Xu Dong Yuan
    Michael A. Henning
    Acta Mathematica Sinica, English Series, 2009, 25 : 1253 - 1268