BALANCED GRAPHS WITH MINIMUM DEGREE CONSTRAINTS

被引:3
|
作者
SHEEHAN, J
机构
[1] Department of Mathematics, University of Aberdeen, Aberdeen, AB9 2TY, Dunbar Street
关键词
D O I
10.1016/0012-365X(92)90123-W
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite simple graph on n vertices with minimum degree-delta = delta(G) (n = delta (mod 2)). Suppose that 0 less-than-or-equal-to delta less-than-or-equal-to n - 2, 0 less-than-or-equal-to i less-than-or-equal-to [1/2-delta]. A partition (X, Y) of V(G) is said to be an (i, delta)-partition of G if: (i) absolute value of X = [1/2n] + i, absolute value of Y = [1/2n] - i, (ii) delta([X]) greater-than-or-equal-to [1/2-delta] + i, delta([Y]) greater-than-or-equal-to [1/2-delta] - i. We prove that if G is connected then G possesses an (i, delta)-partition for some i, 0 less-than-or-equal-to i less-than-or-equal-to [1/2-delta] - 1. We show that this result is sharp and provide a family of counterexamples to Conjecture 5 in Sheehan (1988).
引用
收藏
页码:307 / 314
页数:8
相关论文
共 50 条
  • [31] A note on minimum degree conditions for supereulerian graphs
    Broersma, HJ
    Xiong, LM
    DISCRETE APPLIED MATHEMATICS, 2002, 120 (1-3) : 35 - 43
  • [32] The connectivity and minimum degree of circuit graphs of matroids
    Ping Li
    Gui Zhen Liu
    Acta Mathematica Sinica, English Series, 2010, 26 : 353 - 360
  • [33] The Connectivity and Minimum Degree of Circuit Graphs of Matroids
    Ping LI School of Mathematics and System Sciences
    ActaMathematicaSinica(EnglishSeries), 2010, 26 (02) : 353 - 360
  • [34] Matching Cut in Graphs with Large Minimum Degree
    Chen, Chi-Yeh
    Hsieh, Sun-Yuan
    Le, Hoang-Oanh
    Le, Van Bang
    Peng, Sheng-Lung
    ALGORITHMICA, 2021, 83 (05) : 1238 - 1255
  • [35] DOMINATION IN GRAPHS WITH MINIMUM DEGREE-2
    MCCUAIG, W
    SHEPHERD, B
    JOURNAL OF GRAPH THEORY, 1989, 13 (06) : 749 - 762
  • [36] Contractible cycles in graphs with large minimum degree
    Egawa, Y
    DISCRETE MATHEMATICS, 1997, 171 (1-3) : 103 - 119
  • [37] Matching Cut in Graphs with Large Minimum Degree
    Chi-Yeh Chen
    Sun-Yuan Hsieh
    Hoang-Oanh Le
    Van Bang Le
    Sheng-Lung Peng
    Algorithmica, 2021, 83 : 1238 - 1255
  • [38] Minimum degree conditions for the strength and bandwidth of graphs
    Ichishima, Rikio
    Muntaner-Batle, Francesc A.
    Oshima, Akito
    DISCRETE APPLIED MATHEMATICS, 2022, 320 : 191 - 198
  • [39] On a Conjecture of the Harmonic Index and the Minimum Degree of Graphs
    Sun, Xiaoling
    Gao, Yubin
    Du, Jianwei
    Xu, Lan
    FILOMAT, 2018, 32 (10) : 3435 - 3441
  • [40] The connectivity and minimum degree of circuit graphs of matroids
    Li, Ping
    Liu, Gui Zhen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (02) : 353 - 360