CYCLIC AND PSEUDO-CYCLIC MDS CODES OF LENGTH Q+1

被引:12
|
作者
DAHL, C
PEDERSEN, JP
机构
[1] Mathematical Institute, The Technical University of Denmark, DK-2800 Lyngby
关键词
D O I
10.1016/0097-3165(92)90104-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explicitly show that cyclic and pseudo-cyclic MDS codes of length q + 1, obtained by a BCH-construction, are generalized Reed-Solomon codes. © 1992.
引用
收藏
页码:130 / 133
页数:4
相关论文
共 50 条
  • [41] Cyclic and pseudo-cyclic electron pathways play antagonistic roles during nitrogen deficiency in Chlamydomonas reinhardtii
    Dao, Ousmane
    Burlacot, Adrien
    Buchert, Felix
    Bertrand, Marie
    Auroy, Pascaline
    Stoffel, Carolyne
    Madireddi, Sai Kiran
    Irby, Jacob
    Hippler, Michael
    Peltier, Gilles
    Li-Beisson, Yonghua
    PLANT PHYSIOLOGY, 2024,
  • [42] The minimum Hamming distances of repeated-root cyclic codes of length 6ps and their MDS codes
    Gao, Ying
    Yue, Qin
    Li, Fengwei
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 65 (1-2) : 107 - 123
  • [43] Quantum MDS and synchronizable codes from cyclic and negacyclic codes of length 4ps over Fpm
    Dinh, Hai Q.
    Le, Ha T.
    Nguyen, Bac T.
    Tansuchat, Roengchai
    QUANTUM INFORMATION PROCESSING, 2021, 20 (11)
  • [44] Quantum MDS and Synchronizable Codes From Cyclic and Negacyclic Codes of Length 2ps Over Fpm
    Dinh, Hai Q.
    Nguyen, Bac T.
    Yamaka, Woraphon
    IEEE ACCESS, 2020, 8 : 124608 - 124623
  • [45] Grassl–Rötteler cyclic and consta-cyclic MDS codes are generalised Reed–Solomon codes
    Simeon Ball
    Designs, Codes and Cryptography, 2023, 91 : 1685 - 1694
  • [46] CYCLIC AND SKEW CYCLIC CODES OVER THE F-q
    Dertli, Abdullah
    Cengellenmis, Yasemin
    JOURNAL OF SCIENCE AND ARTS, 2016, (01): : 13 - 22
  • [47] CONSTRUCTIONS OF q-ARY ENTANGLEMENT-ASSISTED QUANTUM MDS CODES WITH MINIMUM DISTANCE GREATER THAN q+1
    Fan, Jihao
    Chen, Hanwu
    Xu, Juan
    QUANTUM INFORMATION & COMPUTATION, 2016, 16 (5-6) : 423 - 434
  • [48] INEQUIVALENT CYCLIC CODES OF PRIME LENGTH
    NEWHART, DW
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (05) : 703 - 705
  • [49] BOUND FOR CYCLIC CODES OF COMPOSITE LENGTH
    HARTMANN, CR
    TZENG, KK
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1972, 18 (02) : 307 - +
  • [50] Minimal cyclic codes of length pnq
    Bakshi, GK
    Raka, M
    FINITE FIELDS AND THEIR APPLICATIONS, 2003, 9 (04) : 432 - 448