Minimal cyclic codes of length pnq

被引:44
|
作者
Bakshi, GK [1 ]
Raka, M [1 ]
机构
[1] Panjab Univ, Ctr Adv Study Math, Chandigarh 160014, India
关键词
primitive idempotents; primitive roots; minimal cyclic codes and cyclotomic cosets;
D O I
10.1016/S1071-5797(03)00023-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Explicit expressions for all the 3n + 2 primitive idempotents in the ring R-pnq = GF(l)[x]/(x(pnq) - 1), where p, q, l are distinct odd primes, l is a primitive root modulo p(n) and q both, gcd(phi(p(n))/2, phi(q)/2) = 1, are obtained. The dimension, generating polynomials and the minimum distance of the minimal cyclic codes of length p(n)q over GF(l) are also discussed. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:432 / 448
页数:17
相关论文
共 50 条
  • [1] Minimal cyclic codes of length pnq
    Sahni, Amita
    Sehgal, Poonam Trama
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (05) : 1017 - 1036
  • [2] Idempotents Generators for Minimal Cyclic Codes of Length pnq
    Bastos, Gustavo Terra
    Guerreiro, Marines
    CODING THEORY AND APPLICATIONS, 4TH INTERNATIONAL CASTLE MEETING, 2015, 3 : 345 - 352
  • [3] Minimal cyclic codes of length pnq (vol 9, pg 432, 2003)
    Bakshi, Gurmeet K.
    Raka, Madhu
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (04) : 863 - 863
  • [4] Minimal cyclic codes of length 2pn
    Arora, SK
    Pruthi, M
    FINITE FIELDS AND THEIR APPLICATIONS, 1999, 5 (02) : 177 - 187
  • [5] MINIMAL QUADRATIC RESIDUE CYCLIC CODES OF LENGTH 2(n)
    Batra, Sudhir
    Arora, S. K.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2005, 18 (1-2) : 25 - 43
  • [6] Minimal and maximal cyclic codes of length 2p
    Heboub, Lakhdar
    Mihoubi, Douadi
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (01): : 63 - 74
  • [7] Minimal quadratic residue cyclic codes of length pn(p odd prime)
    Batra, Sudhir
    Arora, S.K.
    Journal of Applied Mathematics and Computing, 2001, 8 (03) : 531 - 547
  • [8] Minimal quadratic residue cyclic codes of length pn(p ODD prime)
    Batra S.
    Arora S.K.
    Korean Journal of Computational and Applied Mathematics, 2001, 8 (3): : 531 - 547
  • [9] On the lower bound for the length of minimal codes
    Scotti, Martin
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [10] CYCLE REPRESENTATIVES FOR MINIMAL CYCLIC CODES
    WILLETT, MC
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (06) : 716 - 718