ISOMORPHISM TESTING OF K-TREES IS IN NC, FOR FIXED-K

被引:4
|
作者
CHANDRASEKHARAN, N [1 ]
机构
[1] CLEMSON UNIV,DEPT MATH SCI,CLEMSON,SC 29634
关键词
computational complexity; isomorphism; k-trees; Parallel algorithms;
D O I
10.1016/0020-0190(90)90011-L
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
[No abstract available]
引用
收藏
页码:283 / 287
页数:5
相关论文
共 50 条
  • [31] Enumeration of K-Trees and Applications
    Mahendra Jani
    Robert G. Rieper
    Melkamu Zeleke
    Annals of Combinatorics, 2002, 6 (3) : 375 - 382
  • [32] Bell numbers and k-trees
    Yang, W
    DISCRETE MATHEMATICS, 1996, 156 (1-3) : 247 - 252
  • [33] PROPERTIES AND CHARACTERIZATIONS OF K-TREES
    BEINEKE, LW
    PIPPERT, RE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (05): : 813 - &
  • [35] Γ-species and the enumeration of k-trees
    Gainer-Dewar, Andrew
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):
  • [36] RAY REPRESENTATION FOR K-TREES
    AKMAN, V
    FRANKLIN, WR
    PATTERN RECOGNITION LETTERS, 1989, 10 (05) : 315 - 320
  • [37] Some properties of k-trees
    Shook, James M.
    Wei, Bing
    DISCRETE MATHEMATICS, 2010, 310 (17-18) : 2415 - 2425
  • [38] Subclasses of k-trees:: Characterization and recognition
    Markenzon, L
    Justel, CM
    Paciornik, N
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (05) : 818 - 825
  • [39] Bounding Mean Orders of Sub-k-Trees of k-Trees
    Cambie, Stijn
    McCoy, Bradley
    Wagner, Stephan
    Yap, Corrine
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):
  • [40] Independent (k+1)-domination in k-trees
    Borowiecki, Mieczyslaw
    Fiedorowicz, Anna
    Sidorowicz, Elzbieta
    Tuza, Zsolt
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 99 - 110