ISOMORPHISM TESTING OF K-TREES IS IN NC, FOR FIXED-K

被引:4
|
作者
CHANDRASEKHARAN, N [1 ]
机构
[1] CLEMSON UNIV,DEPT MATH SCI,CLEMSON,SC 29634
关键词
computational complexity; isomorphism; k-trees; Parallel algorithms;
D O I
10.1016/0020-0190(90)90011-L
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
[No abstract available]
引用
收藏
页码:283 / 287
页数:5
相关论文
共 50 条
  • [21] Toughness and hamiltonicity in k-trees
    Broersma, Hajo
    Xiong, Liming
    Yoshimoto, Kiyoshi
    DISCRETE MATHEMATICS, 2007, 307 (7-8) : 832 - 838
  • [22] GENERATION + REALIZATION OF TREES + K-TREES
    HAKIMI, SL
    GREEN, DG
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1964, CT11 (02): : 247 - &
  • [23] The mean order of sub-k-trees of k-trees
    Stephens, Alexander M.
    Oellermann, Ortrud R.
    JOURNAL OF GRAPH THEORY, 2018, 88 (01) : 61 - 79
  • [24] PROPERTIES AND CHARACTERIZATIONS OF K-TREES
    BEINEKE, LW
    PIPPERT, RE
    MATHEMATIKA, 1971, 18 (35) : 141 - &
  • [25] Closure and Spanning k-Trees
    Matsubara, Ryota
    Tsugaki, Masao
    Yamashita, Tomoki
    GRAPHS AND COMBINATORICS, 2014, 30 (04) : 957 - 962
  • [26] Closure and Spanning k-Trees
    Ryota Matsubara
    Masao Tsugaki
    Tomoki Yamashita
    Graphs and Combinatorics, 2014, 30 : 957 - 962
  • [27] Counting unlabeled k-trees
    Gainer-Dewar, Andrew
    Gessel, Ira M.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 126 : 177 - 193
  • [28] Interval routing on k-trees
    Narayanan, L
    Nishimura, N
    JOURNAL OF ALGORITHMS, 1998, 26 (02) : 325 - 369
  • [29] Sequences characterizing k-trees
    Lotker, Zvi
    Majumdar, Debapriyo
    Narayanaswamy, N. S.
    Weber, Ingmar
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2006, 4112 : 216 - 225
  • [30] On the Book Thickness of k-Trees
    Dujmovic, Vida
    Wood, David R.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2011, 13 (03): : 39 - 44