On finite groups with Hall normally embedded Schmidt subgroups

被引:0
|
作者
Kniahina, Viktoryia N. [1 ]
Monakhov, Victor S. [1 ]
机构
[1] Francisk Skorina Gomel State Univ, Dept Math, Sovetskaya Str 104, Gomel 246019, BELARUS
来源
ALGEBRA & DISCRETE MATHEMATICS | 2018年 / 26卷 / 01期
关键词
finite group; Hall subgroup; normal subgroup; derived subgroup; nilpotent subgroup;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subgroup H of a finite group G is said to be Hall normally embedded in G if there is a normal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a non-nilpotent finite group whose all proper subgroups are nilpotent. In this paper, we prove that if each Schmidt subgroup of a finite group G is Hall normally embedded in G, then the derived subgroup of G is nilpotent.
引用
收藏
页码:90 / 96
页数:7
相关论文
共 50 条
  • [1] ON HALL NORMALLY EMBEDDED SUBGROUPS OF FINITE GROUPS
    Li, Shirong
    He, Jun
    Nong, Guoping
    Zhou, Longqiao
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (09) : 3360 - 3367
  • [2] Finite groups with Hall normally embedded subgroups
    Guo, Qinghong
    He, Xuanli
    Huang, Muhong
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (09)
  • [3] A note on Hall normally embedded subgroups of finite groups
    He, Xuanli
    Sun, Qinhui
    Guo, Qinghong
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023,
  • [4] On finite groups with some Hall normally embedded subgroups
    Meng, Wei
    Lu, Jiakuan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [5] Finite groups whose subgroups are Hall normally embedded
    Guo, Pengfei
    Yang, Yue
    ARS COMBINATORIA, 2019, 146 : 285 - 291
  • [6] Finite groups with hall subnormally embedded Schmidt subgroups
    Monakhov, Victor S.
    Kniahina, Viktoryia N.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (01) : 93 - 100
  • [7] Finite groups with Hall subnormally embedded Schmidt subgroups
    Monakhov, Victor S.
    Kniahina, Viktoryia N.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (02) : 668 - 675
  • [8] Finite groups with hall Schmidt subgroups
    Kniahina, V. N.
    Monakhov, V. S.
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 81 (3-4): : 341 - 350
  • [9] Finite groups with Hall Schmidt subgroups
    Bazhanova, E. N.
    Vedernikov, V. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (03): : 3 - 11
  • [10] Finite groups with normally embedded subgroups
    Shen, Zhencai
    Li, Shirong
    Shi, Wujie
    JOURNAL OF GROUP THEORY, 2010, 13 (02) : 257 - 265