NONLINEAR PROGRAMMING - CHOICE OF DIRECTION BY GRADIENT PROJECTION

被引:2
|
作者
ZWART, PB
机构
来源
NAVAL RESEARCH LOGISTICS QUARTERLY | 1970年 / 17卷 / 04期
关键词
D O I
10.1002/nav.3800170403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:431 / &
相关论文
共 50 条
  • [21] A feasible direction algorithm for general nonlinear semidefinite programming
    Roche, Jean Rodolphe
    Herskovits, Jose
    Bazan, Elmer
    Zuniga, Andres
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2017, 55 (04) : 1261 - 1279
  • [22] A GENERALIZED GRADIENT PROJECTION ALGORITHM OF OPTIMIZATION WITH NONLINEAR CONSTRAINTS
    LAI, YL
    GAO, ZY
    HE, GP
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1993, 36 (02): : 170 - 180
  • [23] THE STEEPEST DESCENT DIRECTION FOR THE NONLINEAR BILEVEL PROGRAMMING PROBLEM
    SAVARD, G
    GAUVIN, J
    [J]. OPERATIONS RESEARCH LETTERS, 1994, 15 (05) : 265 - 272
  • [24] GENERALIZED INVERSE IN LINEAR-PROGRAMMING - INTERIOR GRADIENT PROJECTION METHODS
    PYLE, LD
    CLINE, RE
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1973, 24 (04) : 511 - 534
  • [25] OPTIMAL VALUE FUNCTIONS IN MATHEMATICAL PROGRAMMING AND CONVERGENCE FOR GRADIENT PROJECTION METHOD
    WANG Changyu
    ZHAO Fuan (InStitute of OR
    [J]. Journal of Systems Science & Complexity, 1994, (03) : 261 - 269
  • [26] Accelerated gradient methods for nonconvex nonlinear and stochastic programming
    Ghadimi, Saeed
    Lan, Guanghui
    [J]. MATHEMATICAL PROGRAMMING, 2016, 156 (1-2) : 59 - 99
  • [27] Accelerated gradient methods for nonconvex nonlinear and stochastic programming
    Saeed Ghadimi
    Guanghui Lan
    [J]. Mathematical Programming, 2016, 156 : 59 - 99
  • [28] A GRADIENT ALGORITHM FOR CHANCE CONSTRAINED NONLINEAR GOAL PROGRAMMING
    LEE, SM
    OLSON, DL
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1985, 22 (03) : 359 - 369
  • [29] A feasible direction interior point algorithm for nonlinear semidefinite programming
    Aroztegui, Miguel
    Herskovits, Jose
    Roche, Jean Rodolphe
    Bazan, Elmer
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2014, 50 (06) : 1019 - 1035
  • [30] REDUCED-DIRECTION METHODS FOR THE NONLINEAR-PROGRAMMING PROBLEM
    IZHUTKIN, VS
    KOKURIN, MY
    [J]. USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1988, 28 (06): : 135 - 145