THE STEEPEST DESCENT DIRECTION FOR THE NONLINEAR BILEVEL PROGRAMMING PROBLEM

被引:116
|
作者
SAVARD, G
GAUVIN, J
机构
[1] Gerad. École Polytechnique de Montréal, Département de mathématiques appliquées, Montréal, Que. H3C 3A7, C.P. 6079, Succ. Centre-Ville
[2] École Polytechnique de Montréal, Département de mathématiques appliquées, Montréal, Que. H3C 3A7, C.P. 6079, Succ. Centre-Ville
基金
加拿大自然科学与工程研究理事会;
关键词
BILEVEL PROGRAMMING; PARAMETRIC ANALYSIS; GLOBAL OPTIMIZATION;
D O I
10.1016/0167-6377(94)90086-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we give necessary optimality conditions for the nonlinear bilevel programming problem. Furthermore, at each feasible point, we show that the steepest descent direction is obtained by solving a quadratic bilevel programming problem. We give indication that this direction can be used to develop a descent algorithm for the nonlinear bilevel problem.
引用
收藏
页码:265 / 272
页数:8
相关论文
共 50 条
  • [1] On the direction of the steepest descent
    Malozemov, V. N.
    Tamasyan, G. Sh
    [J]. VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2019, 15 (04): : 489 - 501
  • [2] Feasible direction method for bilevel programming problem
    Mersha, Ayalew Getachew
    Dempe, Stephan
    [J]. OPTIMIZATION, 2012, 61 (05) : 597 - 616
  • [3] STEEPEST DESCENT FOR PLATEAUS PROBLEM
    GAVEAU, B
    MAZET, E
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 1987, 111 (02): : 111 - 187
  • [4] STEEPEST DESCENT FOR PLATEAUS PROBLEM
    GAVEAU, B
    MAZET, E
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (07): : 491 - 494
  • [5] Approximation of the steepest descent direction for the O-D matrix adjustment problem
    Codina, Esteve
    Montero, Lidia
    [J]. ANNALS OF OPERATIONS RESEARCH, 2006, 144 (01) : 329 - 362
  • [6] Approximation of the steepest descent direction for the O-D matrix adjustment problem
    Esteve Codina
    Lídia Montero
    [J]. Annals of Operations Research, 2006, 144 : 329 - 362
  • [7] Steepest descent method for solving zero-one nonlinear programming problems
    Anjidani, M.
    Effati, S.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 193 (01) : 197 - 202
  • [8] Exact Penalty Method for the Nonlinear Bilevel Programming Problem
    PAN Qingfei1
    2.Department of Mathematics and Measure Economics
    3.Department of Mathematics and Computer
    [J]. Wuhan University Journal of Natural Sciences, 2010, 15 (06) : 471 - 475
  • [9] A bilevel improved fruit fly optimization algorithm for the nonlinear bilevel programming problem
    Wang, Guangmin
    Ma, Linmao
    Chen, Jiawei
    [J]. KNOWLEDGE-BASED SYSTEMS, 2017, 138 : 113 - 123
  • [10] A neural network approach for nonlinear bilevel programming problem
    Lv, Yibing
    Hu, Tiesong
    Wan, Zhongping
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (ISKE 2007), 2007,