Evaluating Feature Selection Methods for Network Intrusion Detection with Kyoto Data

被引:15
|
作者
Najafabadi, Maryam M. [1 ]
Khoshgoftaar, Taghi M. [1 ]
Seliya, Naeem [2 ]
机构
[1] Florida Atlantic Univ, Dept Comp & Elect Engn & Comp Sci, Boca Raton, FL 33431 USA
[2] Florida Atlantic Univ, Boca Raton, FL 33431 USA
基金
美国国家科学基金会;
关键词
Intrusion detection; feature selection;
D O I
10.1142/S0218539316500017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Considering the large quantity of the data flowing through the network routers, there is a very high demand to detect malicious and unhealthy network traffic to provide network users with reliable network operation and security of their information. Predictive models should be built to identify whether a network traffic record is healthy or malicious. To build such models, machine learning methods have started to be used for the task of network intrusion detection. Such predictive models must monitor and analyze a large amount of network data in a reasonable amount of time (usually real time). To do so, they cannot always process the whole data and there is a need for data reduction methods, which reduce the amount of data that needs to be processed. Feature selection is one of the data reduction methods that can be used to decrease the process time. It is important to understand which features are most relevant to determining if a network traffic record is malicious and avoid using the whole feature set to make the processing time more efficient. Also it is important that the simple model built from the reduced feature set be as effective as a model which uses all the features. Considering these facts, feature selection is a very important pre-processing step in the detection of network attacks. The goal is to remove irrelevant and redundant features in order to increase the overall effectiveness of an intrusion detection system without negatively affecting the classification performance. Most of the previous feature selection studies in the area of intrusion detection have been applied on the KDD 99 dataset. As KDD 99 is an outdated dataset, in this paper, we compare different feature selection methods on a relatively new dataset, called Kyoto 2006+. There is no comprehensive comparison of different feature selection approaches for this dataset. In the present work, we study four filter-based feature selection methods which are chosen from two categories for the application of network intrusion detection. Three filter-based feature rankers and one filter-based subset evaluation technique are compared together along with the null case which applies no feature selection. We also apply statistical analysis to determine whether performance differences between these feature selection methods are significant or not. We find that among all the feature selection methods, Signal-to-Noise (S2N) gives the best performance results. It also outperforms no feature selection approach in all the experiments.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Network Intrusion Detection Based on LDA for Payload Feature Selection
    Tan, Zhiyuan
    Jamdagni, Aruna
    He, Xiangjian
    Nanda, Priyadarsi
    2010 IEEE GLOBECOM WORKSHOPS, 2010, : 1545 - 1549
  • [22] Relevance Feature Selection with Data Cleaning for Intrusion Detection System
    Suthaharan, Shan
    Panchagnula, Tejaswi
    2012 PROCEEDINGS OF IEEE SOUTHEASTCON, 2012,
  • [23] A novel feature selection approach for intrusion detection data classification
    Ambusaidi, Mohammed A.
    He, Xiangjian
    Tan, Zhiyuan
    Nanda, Priyadarsi
    Lu, Liang Fu
    Nagar, Upasana T.
    2014 IEEE 13TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM), 2014, : 82 - 89
  • [24] A data-driven network intrusion detection system using feature selection and deep learning
    Zhang, Lianming
    Liu, Kui
    Xie, Xiaowei
    Bai, Wenji
    Wu, Baolin
    Dong, Pingping
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2023, 78
  • [25] An Ensemble Classifier Approach on Different Feature Selection Methods for Intrusion Detection
    Vinutha, H. P.
    Poornima, B.
    INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS, INDIA 2017, 2018, 672 : 442 - 451
  • [26] Evaluating the impact of filter-based feature selection in intrusion detection systems
    Houssam Zouhri
    Ali Idri
    Ahmed Ratnani
    International Journal of Information Security, 2024, 23 : 759 - 785
  • [27] Evaluating the impact of filter-based feature selection in intrusion detection systems
    Zouhri, Houssam
    Idri, Ali
    Ratnani, Ahmed
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2024, 23 (02) : 759 - 785
  • [28] Feature selection and deep learning approach for anomaly network intrusion detection
    Bennaceur, Khadidja
    Sahraoui, Zakaria
    Nacer, Mohamed Ahmad
    INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTER SECURITY, 2024, 23 (04) : 433 - 453
  • [29] A feature selection approach to find optimal feature subsets for the network intrusion detection system
    Seung-Ho Kang
    Kuinam J. Kim
    Cluster Computing, 2016, 19 : 325 - 333
  • [30] Ant colony optimization based network intrusion feature selection and detection
    Gao, HH
    Yang, HH
    Wang, XY
    PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 3871 - 3875