Investigation of PM2.5 Pollution Episodes in Gwangju

被引:11
|
作者
Yu, Geun-Hye [1 ]
Cho, Sung-Yong [1 ]
Bae, Min-Suk [2 ]
Lee, Kwon-Ho [3 ]
Park, Seung-Shik [1 ]
机构
[1] Chonnam Natl Univ, Dept Environm & Energy Engn, Gwangju, South Korea
[2] Mokpo Natl Univ, Dept Environm Engn, Muan, South Korea
[3] Gangneung Wonju Natl Univ, Dept Atmospher & Environm Sci, Kangnung, South Korea
关键词
PM2.5; standard; Episode; Secondary formation; Haze; Potential source contribution function;
D O I
10.5572/KOSAE.2015.31.3.269
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
24-hr integrated PM2.5 measurements were performed between December 2013 and October 2014 at an urban site in Gwangju and the collected samples were analyzed for organic carbon (OC), elemental carbon (EC), ionic species, and elemental species. Objectives of this study were to identify PM2.5 pollution episodes, to characterize their chemical components, and to examine their probable origins. Over the course of the study period, average PM2.5 concentration was 37.7 +/- 23.6 (6.0 similar to 121.5) mu g/m(3). Concentrations of secondary ionic species; NH4+, NO3-, and SO42- was on average 5.54 mu g/m(3) (0.28 similar to 20.86), 7.60 mu g/m(3)(0.45 similar to 33.53), and 9.05 mu g/m(3) (0.50 similar to 34.98), accounting for 13.7% (4.6 similar to 22.7), 18.6% (2.9 similar to 44.8), and 22.9% (4.9 similar to 55.1) of the PM2.5 concentration, respectively. Average OC and EC concentrations were 5.22 mu gC/m(3) and 1.54 mu gC/m(3), taking possession of 4.6 and 22.2% (as organic mass) of the PM2.5, respectively. Frequencies at which 24-hr averaged PM2.5 exceeded a 24-hr averaged Korean PM2.5 standard of 50 mu g/m(3) (termed as an "episode" in this study) were 30, accounting for 21.3% of total 141 measurements. These pollution episodes were mostly associated with haze phenomenon and weak surface wind speed. It is suggested that secondary formation of aerosol was one important formation mechanism of the episodes. The episodes were associated with enhancements of organic mass, NO3- and SO42- in winter, of NO3- and SO42- in spring, and of SO42- in summer. Potential source contribution function results indicate also that PM2.5 episodes were likely attributed to local and regional haze pollution transported from northeastern China in winter, to atmospheric processing of local emissions rather than long-range transport of air pollutants in spring, and to the SO42- driven by photochemistry of SO2 in summer.
引用
收藏
页码:269 / 286
页数:18
相关论文
共 50 条
  • [41] PM2.5 air pollution contributes to the burden of frailty
    Lee, Wei-Ju
    Liu, Ching-Yi
    Peng, Li-Ning
    Lin, Chi-Hung
    Lin, Hui-Ping
    Chen, Liang-Kung
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [42] Effect of PM2.5 environmental pollution on rat lung
    Biao Yang
    Jie Guo
    Chunling Xiao
    Environmental Science and Pollution Research, 2018, 25 : 36136 - 36146
  • [43] Effect of PM2.5 pollution on perinatal mortality in China
    Li, Guangqin
    Li, Lingyu
    Liu, Dan
    Qin, Jiahong
    Zhu, Hongjun
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [44] Death Effects Assessment of PM2.5 Pollution in China
    Xie, Zhixiang
    Qin, Yaochen
    Zhang, Lijun
    Zhang, Rongrong
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2018, 27 (04): : 1813 - 1821
  • [45] Effect of PM2.5 pollution on perinatal mortality in China
    Guangqin Li
    Lingyu Li
    Dan Liu
    Jiahong Qin
    Hongjun Zhu
    Scientific Reports, 11
  • [46] Concentration Characteristics of PM2.5 and the Contributions of Physical and Chemical Processes to its Production during 2019 PM2.5 Episodes in Seoul
    Han, Seung-Beom
    Song, Sang-Keun
    Moon, Soo-Hwan
    JOURNAL OF KOREAN SOCIETY FOR ATMOSPHERIC ENVIRONMENT, 2022, 38 (02) : 220 - 236
  • [47] PM2.5 air pollution components and mortality in Denmark
    Raaschou-Nielsen, Ole
    Antonsen, Sussie
    Agerbo, Esben
    Hvidtfeldt, Ulla A.
    Geels, Camilla
    Frohn, Lise M.
    Christensen, Jesper H.
    Sigsgaard, Torben
    Brandt, Jurgen
    Pedersen, Carsten B.
    ENVIRONMENT INTERNATIONAL, 2023, 171
  • [48] Impacts of shipping emissions on PM2.5 pollution in China
    Lv, Zhaofeng
    Liu, Huan
    Ying, Qi
    Fu, Mingliang
    Meng, Zhihang
    Wang, Yue
    Wei, Wei
    Gong, Huiming
    He, Kebin
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (21) : 15811 - 15824
  • [49] Composition and oxidative potential of PM2.5 pollution and health
    Robinson, Dorothy L.
    JOURNAL OF THORACIC DISEASE, 2017, 9 (03) : 444 - 447
  • [50] Sensitivity of PM2.5 and O3 pollution episodes to meteorological factors over the North China Plain
    Ma, Simeng
    Shao, Min
    Zhang, Yufen
    Dai, Qili
    Xie, Mingjie
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 792