GLOBAL NONLINEAR NOISE REDUCTION USING RADIAL BASIS FUNCTIONS

被引:10
|
作者
Holzfuss, Joachim [1 ]
Kadtke, James [2 ]
机构
[1] TH Darmstadt, Inst Angew Phys, Schlossgartenstr 7, D-64289 Darmstadt, Germany
[2] Univ Calif San Diego, Inst Pure & Appl Phys Sci, La Jolla, CA 92093 USA
来源
关键词
D O I
10.1142/S0218127493000489
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A global nonlinear technique for noise reduction is described which is able to separate a noise source from a periodic or chaotic signal. The method is based on interpolation of the global flow of nonlinear dynamical systems with radial basis functions. Preliminary results indicate it provides a considerable increase of the signal-to-noise ratio. The algorithm is described in detail and numerical examples are given.
引用
收藏
页码:589 / 596
页数:8
相关论文
共 50 条
  • [41] Magnetohydrodynamic simulations using radial basis functions
    Colaco, Marcelo J.
    Dulikravich, George S.
    Orlande, Helcio R. B.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (25-26) : 5932 - 5939
  • [42] Detection of eyes using radial basis functions
    Debenham, R.M.
    Garth, S.C.J.
    Proceedings of the International Conference on Artificial Neural Networks, 1991,
  • [43] Biharmonic navigation using radial basis functions
    Fan, Xu-Qian
    Gong, Wenyong
    ROBOTICA, 2022, 40 (03) : 599 - 610
  • [44] Rainfield tracking using radial basis functions
    Dell'Acqua, F
    Gamba, P
    IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 2068 - 2070
  • [45] Global Optimization Method Based on Incremental Radial Basis Functions
    Wei, Xin
    Wu, Yizhong
    Chen, Liping
    FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE II, PTS 1-6, 2012, 121-126 : 3950 - 3954
  • [46] Radial Basis Functions
    Giesl, Peter
    CONSTRUCTION OF GLOBAL LYAPUNOV FUNCTIONS USING RADIAL BASIS FUNCTIONS, 2007, 1904 : 61 - 98
  • [47] The approximate solution of nonlinear Volterra integral equations of the second kind using radial basis functions
    Assari, Pouria
    Dehghan, Mehdi
    APPLIED NUMERICAL MATHEMATICS, 2018, 131 : 140 - 157
  • [48] Robust fuzzy control of nonlinear systems using shape-adaptive radial basis functions
    Han, HG
    Su, CY
    FUZZY SETS AND SYSTEMS, 2002, 125 (01) : 23 - 38
  • [49] Optimization of global model composed of radial basis functions using the term-ranking approach
    Cai, Peng
    Tao, Chao
    Liu, Xiao-Jun
    CHAOS, 2014, 24 (01) : 013139
  • [50] Node adaptation for global collocation with radial basis functions using direct multisearch for multiobjective optimization
    Roque, C. M. C.
    Madeira, J. F. A.
    Ferreira, A. J. M.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2014, 39 : 5 - 14