GLOBAL NONLINEAR NOISE REDUCTION USING RADIAL BASIS FUNCTIONS

被引:10
|
作者
Holzfuss, Joachim [1 ]
Kadtke, James [2 ]
机构
[1] TH Darmstadt, Inst Angew Phys, Schlossgartenstr 7, D-64289 Darmstadt, Germany
[2] Univ Calif San Diego, Inst Pure & Appl Phys Sci, La Jolla, CA 92093 USA
来源
关键词
D O I
10.1142/S0218127493000489
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A global nonlinear technique for noise reduction is described which is able to separate a noise source from a periodic or chaotic signal. The method is based on interpolation of the global flow of nonlinear dynamical systems with radial basis functions. Preliminary results indicate it provides a considerable increase of the signal-to-noise ratio. The algorithm is described in detail and numerical examples are given.
引用
收藏
页码:589 / 596
页数:8
相关论文
共 50 条
  • [1] Nonlinear PLS using radial basis functions
    Wilson, DJH
    Irwin, GW
    Lightbody, G
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 1997, 19 (04) : 211 - 220
  • [2] Nonlinear system identification using radial basis functions
    Mokhasi, Paritosh
    Rempfer, Dietmar
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 63 (02) : 121 - 162
  • [3] Nonlinear PLS modelling using radial basis functions
    Wilson, DJH
    Irwin, GW
    Lightbody, G
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 3275 - 3276
  • [4] Global Optimization of Costly Nonconvex Functions Using Radial Basis Functions
    Bjorkman, Mattias
    Holmstrom, Kenneth
    OPTIMIZATION AND ENGINEERING, 2000, 1 (04) : 373 - 397
  • [5] Construction of Global Lyapunov Functions Using Radial Basis Functions Introduction
    Giesl, Peter
    CONSTRUCTION OF GLOBAL LYAPUNOV FUNCTIONS USING RADIAL BASIS FUNCTIONS, 2007, 1904 : 1 - +
  • [6] Global Optimization of Costly Nonconvex Functions Using Radial Basis Functions
    Mattias Björkman
    Kenneth Holmström
    Optimization and Engineering, 2000, 1 : 373 - 397
  • [7] NONLINEAR-SYSTEMS IDENTIFICATION USING RADIAL BASIS FUNCTIONS
    CHEN, S
    BILLINGS, SA
    COWAN, CFN
    GRANT, PM
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1990, 21 (12) : 2513 - 2539
  • [8] Parallel Stochastic Global Optimization Using Radial Basis Functions
    Regis, Rommel G.
    Shoemaker, Christine A.
    INFORMS JOURNAL ON COMPUTING, 2009, 21 (03) : 411 - 426
  • [9] NONLINEAR MODELING AND PREDICTION BY SUCCESSIVE APPROXIMATION USING RADIAL BASIS FUNCTIONS
    HE, XD
    LAPEDES, A
    PHYSICA D, 1994, 70 (03): : 289 - 301
  • [10] SYSTOLIC ARRAY FOR NONLINEAR MULTIDIMENSIONAL INTERPOLATION USING RADIAL BASIS FUNCTIONS
    BROOMHEAD, DS
    JONES, R
    MCWHIRTER, JG
    SHEPHERD, TJ
    ELECTRONICS LETTERS, 1990, 26 (01) : 7 - 9