A GENERAL APPROACH FOR SOLVING HIGHER ORDER NONLINEAR SYSTEMS BY DELTA METHOD

被引:0
|
作者
PRUSTY, S
机构
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:589 / &
相关论文
共 50 条
  • [21] Homotopy Perturbation Method for Solving Nonlinear Higher-order Boundary Value Problems
    Noor, Muhammad Aslam
    Mohyud-Din, Syed Tauseef
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2008, 9 (04) : 395 - 408
  • [22] Some modifications of the quasilinearization method with higher-order convergence for solving nonlinear BVPs
    Sandile S. Motsa
    Precious Sibanda
    Numerical Algorithms, 2013, 63 : 399 - 417
  • [23] Solving Nonlinear Boundary Value Problems Using the Higher Order Haar Wavelet Method
    Ratas, Mart
    Majak, Juri
    Salupere, Andrus
    MATHEMATICS, 2021, 9 (21)
  • [24] Higher-order modification of Steffensen's method for solving system of nonlinear equations
    Bhalla, S.
    Kumar, S.
    Argyros, I. K.
    Behl, Ramandeep
    Motsa, S. S.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 1913 - 1940
  • [25] A numerical method for solving systems of higher order linear functional differential equations
    Yuzbasi, Suayip
    Gok, Emrah
    Sezer, Mehmet
    OPEN PHYSICS, 2016, 14 (01): : 15 - 25
  • [26] Immersion of Nonlinear Systems into Higher Order Systems
    Aranda-Bricaire, E.
    Califano, C.
    Moog, C. H.
    IFAC PAPERSONLINE, 2017, 50 (01): : 9480 - 9484
  • [27] An optimization method for solving a general class of the inverse system of nonlinear fractional order PDEs
    Avazzadeh, Z.
    Hassani, H.
    Ebadi, M. J.
    Bayati Eshkaftaki, A.
    Hendy, A. S.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2024, 101 (02) : 138 - 153
  • [28] A new method based on artificial neural networks for solving general nonlinear systems
    Abbasnejad, H.
    Jafarian, A.
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2018, 9 (03) : 207 - 218
  • [29] Semilocal convergence analysis of an eighth order iterative method for solving nonlinear systems
    Wang, Xiaofeng
    Yang, Yufan
    Qin, Yuping
    AIMS MATHEMATICS, 2023, 8 (09): : 22371 - 22384
  • [30] A simple and efficient method with high order convergence for solving systems of nonlinear equations
    Xiao, Xiaoyong
    Yin, Hongwei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 69 (10) : 1220 - 1231