A NUMERICAL INVESTIGATION OF DUCTILE FRACTURE INITIATION IN A HIGH-STRENGTH LOW-ALLOY STEEL

被引:6
|
作者
NARASIMHAN, R [1 ]
KAMAT, SV [1 ]
机构
[1] DEF MET RES LAB,HYDERABAD 500258,INDIA
关键词
DUCTILE FRACTURE; FINITE ELEMENTS; IMPACT LOADING;
D O I
10.1007/BF02745178
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, static and drop-weight impact experiments, which have been conducted using three-point bend fracture specimens of a high-strength low-alloy steel, are analysed by performing finite-element simulations. The Gurson constitutive model that accounts for the ductile failure mechanisms of microvoid nucleation, growth and is employed within the framework of a finite deformation plasticity theory. Two populations of second-phase particles are considered, including large inclusions which initiate voids at an early stage and small particles which require large strains to nucleate voids. The most important objective of the work is to assess quantitatively the effects of material inertia, strain rate sensitivity and local adiabatic temperature rise (due to conversion of plastic work into heat) on dynamic ductile crack initiation. This is accomplished by comparing the evolution histories of void volume fraction near the notch tip in the static analysis with the dynamic analyses. The results indicate that increased strain hardening caused by strain rate sensitivity, which becomes important under dynamic loading, plays a benign role in considerably slowing down the void growth rate near the notch tip. This is partially opposed by thermal softening caused by adiabatic heating near the notch tip.
引用
收藏
页码:259 / 282
页数:24
相关论文
共 50 条
  • [31] Ballistic performance of high-strength low-alloy steel weldments
    Reddy, GM
    Mohandas, T
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 1996, 57 (1-2) : 23 - 30
  • [32] High-strength low-alloy powder steel with a composite structure
    Meilakh A.G.
    Steel in Translation, 2009, 39 (11) : 1035 - 1037
  • [33] EFFECT OF PURITY ON TOUGHNESS OF A LOW-ALLOY HIGH-STRENGTH STEEL
    EVANS, PRV
    OWEN, NB
    WILKINS, MA
    JOURNAL OF THE IRON AND STEEL INSTITUTE, 1972, 210 (MAR): : 200 - &
  • [34] HIGH-STRENGTH, LOW-ALLOY, COPPER-NICKEL STEEL
    BUHR, RK
    CANADIAN MINING AND METALLURGICAL BULLETIN, 1971, 64 (712): : 28 - &
  • [35] HIGH STRAIN FATIGUE BEHAVIOR OF A HIGH-STRENGTH LOW-ALLOY STEEL
    GARG, SK
    SINGH, V
    RAO, PR
    SCRIPTA METALLURGICA, 1977, 11 (07): : 593 - 596
  • [36] Static and Dynamic Fracture Toughness Properties of High-Strength Low-Alloy Steel for Naval Application
    Kumar, Jeetesh
    Panchore, Vijay
    Kumar, Jalaj
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [37] COMBINED MODE I-MODE III FRACTURE OF A HIGH-STRENGTH LOW-ALLOY STEEL
    SCHROTH, JG
    HIRTH, JP
    HOAGLAND, RG
    ROSENFIELD, AR
    METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1987, 18 (06): : 1061 - 1072
  • [38] Enhancement of Impact Toughness by Delamination Fracture in a Low-Alloy High-Strength Steel with Al Alloying
    Sun, Junjie
    Jiang, Tao
    Liu, Hongji
    Guo, Shengwu
    Liu, Yongning
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2016, 47A (12): : 5985 - 5993
  • [39] Fracture-property correlation in copper-strengthened high-strength low-alloy steel
    Das, Arpan
    Das, S. K.
    Sivaprasad, S.
    Tarafder, S.
    SCRIPTA MATERIALIA, 2008, 59 (07) : 681 - 683
  • [40] High-Strength Low-Alloy Steels
    Branco, Ricardo
    Berto, Filippo
    METALS, 2021, 11 (07)