ON A CLASS OF NONLINEAR NEUMANN PROBLEMS

被引:1
|
作者
BANDLE, C
POZIO, MA
机构
[1] UNIV BASEL,INST MATH,CH-4051 BASEL,SWITZERLAND
[2] UNIV ROME 2,DIPARTIMENTO MATEMAT,I-00133 ROME,ITALY
来源
关键词
D O I
10.1007/BF01765317
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence theorems for nonlinear Neumann problems with inhomogeneous boundary conditions are established. It is then investigated under which conditions the solutions are uniformly bounded. Uniqueness results for positive solutions are given and the asymptotic behavior of the solutions of the corresponding parabolic equation is discussed. The main tools are fixed point theorems and the method of upper and lower solutions.
引用
收藏
页码:161 / 182
页数:22
相关论文
共 50 条
  • [1] MULTIPLE SOLUTIONS FOR A CLASS OF NONLINEAR NEUMANN EIGENVALUE PROBLEMS
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (04) : 1491 - 1512
  • [2] Weak Solutions and Energy Estimates for a Class of Nonlinear Elliptic Neumann Problems
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    Radulescu, Vicentiu D.
    [J]. ADVANCED NONLINEAR STUDIES, 2013, 13 (02) : 373 - 389
  • [3] NONLINEAR NONCOERCIVE NEUMANN PROBLEMS
    Gasinski, Leszek
    Klimczak, Liliana
    Papageorgiou, Nikolaos S.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (04) : 1107 - 1123
  • [4] Anisotropic nonlinear Neumann problems
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 42 (3-4) : 323 - 354
  • [5] Nonlinear Neumann Problems with Constraints
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2013, 56 (02): : 249 - 270
  • [6] Anisotropic nonlinear Neumann problems
    Leszek Gasiński
    Nikolaos S. Papageorgiou
    [J]. Calculus of Variations and Partial Differential Equations, 2011, 42 : 323 - 354
  • [7] On existence of multiple positive solutions for a class of nonlinear Neumann boundary value problems
    Il'yasov, Ya.Sh.
    Runst, T.
    [J]. Doklady Akademii Nauk, 2001, 376 (03) : 300 - 303
  • [8] ON A CLASS OF NEUMANN PROBLEMS ON KLEIN SURFACES
    Rosiu, Monica
    [J]. PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2017, 18 (02): : 116 - 123
  • [9] On the existence of multiple positive solutions for one class of nonlinear neumann boundary value problems
    Il'yasov, YS
    Runst, T
    [J]. DOKLADY MATHEMATICS, 2001, 63 (01) : 42 - 44
  • [10] SINGULAR NEUMANN BOUNDARY PROBLEMS FOR A CLASS OF FULLY NONLINEAR PARABOLIC EQUATIONS IN ONE DIMENSION
    Kagaya, Takashi
    Liu, Qing
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (04) : 4350 - 4385