MULTIPLE SOLUTIONS FOR A CLASS OF NONLINEAR NEUMANN EIGENVALUE PROBLEMS

被引:9
|
作者
Gasinski, Leszek [1 ]
Papageorgiou, Nikolaos S. [2 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, PL-30348 Krakow, Poland
[2] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
关键词
Smooth solutions of constant sign; nodal solutions; first nonzero eigenvalue; mountain pass theorem; critical groups; negative gradient flow; flow invariance; P-LAPLACIAN; HEMIVARIATIONAL INEQUALITIES; EQUATIONS; Q)-EQUATIONS; EXISTENCE; PRINCIPLE; THEOREM; (P;
D O I
10.3934/cpaa.2014.13.1491
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a parametric nonlinear equation driven by the Neumann p-Laplacian. Using variational methods we show that when the parameter lambda > (lambda) over cap (1) (where (lambda) over cap (1) is the first nonzero eigenvalue of the negative Neumann p-Laplacian), then the problem has at least three nontrivial smooth solutions, two of constant sign (one positive and one negative) and the third nodal. In the semilinear case (i.e., p = 2), using Morse theory and flow invariance argument, we show that the problem has three nodal solutions.
引用
收藏
页码:1491 / 1512
页数:22
相关论文
共 50 条