SOME HIGH-POTENTIAL TRITHIOETHER CHELATES OF COPPER

被引:23
|
作者
KANTERS, RPF [1 ]
YU, R [1 ]
ADDISON, AW [1 ]
机构
[1] DREXEL UNIV,DEPT CHEM,PHILADELPHIA,PA 19104
关键词
D O I
10.1016/S0020-1693(00)82965-5
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The linear quadridentate ligand 1,8-bis(2'-quinolyl)-3,6-dithiaoctane and the three quinquedentate ligands 1,9-bis(2'-pyridyl)-2,5,8-trithianonane, 1,9-bis(6'-methyl-2'-pyridyl)-2,5,8-trithianonane and 1,11-bis(2'-quinolyl)-3,6,9-trithiaundecane have been prepared. The deep green-blue copper(II) chelates have been characterized by optical and ESR spectroscopy and cyclic voltammetry. The two pyridyl chelates have similar tetragonal coordination about the copper, with an equatorial N2S2 donor set, plus the third thioether sulfur bound axially. The most marked consequence of the pyridine alpha-methylation is that the Cu2+/+ reduction potential is raised by about 200 mV; otherwise, the E1/2 is consonant with previously advanced models for correlating redox potentials with ligand structural features. The pyridyl copper(II) complexes have been isolated as the tetrafluoroborate salts, whereas the quinolyl-copper(II) chelates are rather redox unstable, in association with even more positive Cu2+/+E1/2 values, similar to that for dibromine reduction.
引用
收藏
页码:97 / 103
页数:7
相关论文
共 50 条
  • [21] On a high-potential variable-stiffness device
    Markus Henke
    Gerald Gerlach
    Microsystem Technologies, 2014, 20 : 599 - 606
  • [22] On a high-potential variable-stiffness device
    Henke, Markus
    Gerlach, Gerald
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2014, 20 (4-5): : 599 - 606
  • [23] On a high-potential variable flexural stiffness device
    Henke, Markus
    Gerlach, Gerald
    SMART SENSORS, ACTUATORS, AND MEMS VI, 2013, 8763
  • [24] CHARACTERISTICS OF JUDGED HIGH-POTENTIAL MANAGEMENT PERSONNEL
    HARDESTY, DL
    JONES, WS
    AMERICAN PSYCHOLOGIST, 1965, 20 (07) : 558 - 558
  • [25] ESTUARY CROSSINGS - THE PROBLEMS OF HIGH-POTENTIAL SCOUR
    PATRICK, CK
    QUARTERLY JOURNAL OF ENGINEERING GEOLOGY, 1985, 18 (03): : 299 - 299
  • [26] High-Potential Electrolytes for Supercapacitors: Lithium Polyaspartate
    Varfolomeev, S. D.
    Goldberg, V. M.
    Bibikov, S. B.
    Kalinichenko, V. N.
    Mal'tsev, A. A.
    Chervonobrodov, S. P.
    DOKLADY PHYSICAL CHEMISTRY, 2017, 475 : 142 - 144
  • [27] High-potential human mesenchymal stem cells
    Lange, C
    Schroeder, J
    Lioznov, MV
    Zander, AR
    STEM CELLS AND DEVELOPMENT, 2005, 14 (01) : 70 - 80
  • [28] Predictive Competences of High-potential Talent Employees
    De Haro, Jose M.
    Garcia-Izquierdo, Mariano
    Castano, Ana
    Garcia-Izquierdo, Antonio L.
    JOURNAL OF WORK AND ORGANIZATIONAL PSYCHOLOGY-REVISTA DE PSICOLOGIA DEL TRABAJO Y DE LAS ORGANIZACIONES, 2023, 39 (03): : 121 - 130
  • [29] High-potential electrolytes for supercapacitors: Lithium polyaspartate
    S. D. Varfolomeev
    V. M. Goldberg
    S. B. Bibikov
    V. N. Kalinichenko
    A. A. Mal’tsev
    S. P. Chervonobrodov
    Doklady Physical Chemistry, 2017, 475 : 142 - 144
  • [30] HIGH-POTENTIAL ACCEPTOR FOR PHOTOSYSTEM-II
    BOWES, JM
    CROFTS, AR
    ITOH, S
    BIOCHIMICA ET BIOPHYSICA ACTA, 1979, 547 (02) : 320 - 335