LEVEL-CROSSINGS OF A RANDOM POLYNOMIAL WITH HYPERBOLIC ELEMENTS

被引:5
|
作者
FARAHMAND, K
机构
关键词
GAUSSIAN PROCESS; NUMBER OF REAL ROOTS; KAC-RICE FORMULA; ALGEBRAIC POLYNOMIALS; TRIGONOMETRIC POLYNOMIALS; FIXED PROBABILITY SPACE;
D O I
10.2307/2161007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides an asymptotic estimate for the expected number of K-level crossings of a random hyperbolic polynomial g(1) cosh x + g(2) cosh 2x +...+ g(n) cosh nx, where g(j) (j = 1,2,..., n) are independent normally distributed random variables with mean zero, variance one and K is any constant independent of x. It is shown that the result for K = 0 remains valid as long as K = K-n = O(root n).
引用
收藏
页码:1887 / 1892
页数:6
相关论文
共 50 条