ON EXPECTED NUMBER OF LEVEL CROSSINGS OF A RANDOM HYPERBOLIC POLYNOMIAL

被引:0
|
作者
Mahanti, Mina Ketan [1 ]
Sahoo, Loknath [2 ]
机构
[1] Coll Basic Sci & Humanities, Dept Math, Bhubaneswar 751003, Odisha, India
[2] Gopabandhu Sci Coll, Atagarh 751003, Odisha, India
关键词
Random polynomial; expected number of zeros; Kac-Rice formula;
D O I
10.1216/RMJ-2015-45-4-1197
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g(1)(w), g(2)(w), ..., g(n)(w) be independent and normally distributed random variables with mean zero and variance one. We show that, for large values of n, the expected number of times the random hyperbolic polynomial y = g(1)(w) cosh x g(2)(w) cosh 2x + ... + g(n)(w) cosh nx crosses the line y = L, where L is a real number, is 1/pi log n + O(1) if L = o(root n) or L/root n = O(1), but decreases steadily as O(L) increases in magnitude and ultimately becomes negligible when n(-1) log L/root n -> infinity.
引用
收藏
页码:1197 / 1208
页数:12
相关论文
共 50 条