ANCILLARIES AND 3RD-ORDER SIGNIFICANCE

被引:0
|
作者
FRASER, DAS
REID, N
机构
[1] YORK UNIV,DEPT MATH & STAT,N YORK,ON M3J 1P3,CANADA
[2] UNIV TORONTO,DEPT STAT,TORONTO,ON M5S 1A1,CANADA
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a variable and parameter of the same dimension, the tangent exponential model (Fraser, 1988) approximates an asymptotic model to third order in a first derivative neighborhood of the data point and to second order otherwise. For the more usual case of a variable of larger dimension than the parameter, we obtain a unique expression for the third order ancillary distribution as projected to the observed maximum likelihood surface, obtain the tangent directions for a second order ancillary, and then show that third order inference needs only the observed likelihood and the tangent directions for a second order ancillary. These results are then combined and a unique third order distribution is obtained for testing a component parameter; for the case of a real parameter component a simple expression is obtained for the third order observed significance level.
引用
收藏
页码:33 / 53
页数:21
相关论文
共 50 条
  • [11] 3RD-ORDER BRAID INVARIANTS
    BERGER, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (17): : 4027 - 4036
  • [12] Induced 3rd-order Spherochromatism
    Berner, A.
    Zhang, Y.
    Gross, H.
    OPTICAL DESIGN AND ENGINEERING VII, 2018, 10690
  • [13] STABILITY OF 3RD-ORDER SYSTEMS
    GEOZALOV, YI
    ISKENDERZADE, ZA
    IZVESTIYA AKADEMII NAUK AZERBAIDZHANSKOI SSR SERIYA FIZIKO-TEKHNICHESKIKH I MATEMATICHESKIKH NAUK, 1976, (06): : 18 - 22
  • [14] 3RD-ORDER EQUIVALENCE CLASSES
    WULFERT, E
    GREENWAY, DE
    DOUGHER, MJ
    PSYCHOLOGICAL RECORD, 1994, 44 (03): : 411 - 439
  • [15] 3RD-ORDER ABERRATIONS OF HOLOGRAMS
    NOWAK, J
    OPTICA APPLICATA, 1980, 10 (03) : 245 - 251
  • [16] 3RD-ORDER EQUATION FOR BISPINORS
    MARX, E
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1974, 10 (04) : 253 - 260
  • [17] 3RD-ORDER MBPT GRADIENTS
    FITZGERALD, G
    HARRISON, R
    LAIDIG, WD
    BARTLETT, RJ
    JOURNAL OF CHEMICAL PHYSICS, 1985, 82 (09): : 4379 - 4380
  • [18] TORQUE OR 3RD-ORDER MECHANICS
    ISAACSON, RJ
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 1994, 106 (03) : A21 - A22
  • [19] STABILITY OF 3RD-ORDER SYSTEMS
    JOSHI, SG
    SRIRANGARAJAN, HR
    SRINIVASAN, P
    JOURNAL OF SOUND AND VIBRATION, 1976, 48 (04) : 578 - 581
  • [20] ANALYSIS OF A 3RD-ORDER SYSTEM
    SINGH, V
    PROCEEDINGS OF THE IEEE, 1977, 65 (09) : 1404 - 1405