PLASMASPHERIC CONVECTION WITH NON-CLOSED STREAMLINES

被引:12
|
作者
LEMAIRE, JF
SCHUNK, RW
机构
[1] Center for Atmospheric and Space Sciences, Utah State University, Logan
来源
基金
美国国家航空航天局;
关键词
D O I
10.1016/0021-9169(94)90092-2
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A mechanism is described to drive a continuous outflow of thermal plasma in the plasmasphere without violating Faraday's law. It is based on time-dependent interchange motion.
引用
收藏
页码:1629 / 1633
页数:5
相关论文
共 50 条
  • [21] Soap films bounded by non-closed curves
    Jordan Drachman
    Brian White
    The Journal of Geometric Analysis, 1998, 8 (2): : 239 - 250
  • [22] Weak toroidalization over non-closed fields
    Abramovich, Dan
    Denef, Jan
    Karu, Kalle
    MANUSCRIPTA MATHEMATICA, 2013, 142 (1-2) : 257 - 271
  • [23] Contour Reconstruction based on Non-Closed Contours
    Wang, Bei
    He, Jinguo
    ADVANCES IN MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 220-223 : 2313 - 2318
  • [24] Rationality of Fano threefolds over non-closed fields
    Kuznetsov, Alexander
    Prokhorov, Yuri
    AMERICAN JOURNAL OF MATHEMATICS, 2023, 145 (02) : 335 - 411
  • [25] PDE surface generation with combined closed and non-closed form solutions
    Jian-Jun Zhang
    Li-Hua You
    Journal of Computer Science and Technology, 2004, 19 : 650 - 656
  • [26] NON-CLOSED THIN SETS IN HARMONIC-ANALYSIS
    HARTMAN, S
    COLLOQUIUM MATHEMATICUM, 1975, 33 (01) : 117 - 122
  • [27] Rationality of Mukai Varieties over Non-closed Fields
    Kuznetsov, Alexander
    Prokhorov, Yuri
    RATIONALITY OF VARIETIES, 2021, 342 : 249 - 290
  • [28] AFFINE CURVES OVER AN ALGEBRAICALLY NON-CLOSED FIELD
    MARINARI, MG
    ODETTI, F
    RAIMONDO, M
    PACIFIC JOURNAL OF MATHEMATICS, 1983, 107 (01) : 179 - 188
  • [29] Symmetries of Cosmological Cauchy Horizons with Non-Closed Orbits
    Moncrief, Vincent
    Isenberg, James
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 374 (01) : 145 - 186
  • [30] Symmetries of Cosmological Cauchy Horizons with Non-Closed Orbits
    Vincent Moncrief
    James Isenberg
    Communications in Mathematical Physics, 2020, 374 : 145 - 186