TAIL ENTROPY APPROXIMATIONS

被引:8
|
作者
LIND, NC [1 ]
HONG, HP [1 ]
机构
[1] CTR FRONTIER ENGN RES,EDMONTON T6N 1E2,ALBERTA,CANADA
关键词
STATISTICAL; DISTRIBUTION; ESTIMATION; TAIL; ENTROPY; APPROXIMATION;
D O I
10.1016/0167-4730(91)90036-9
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A three parameter tail entropy approximation (TEA) suitable for reliability and risk analysis is described and illustrated by examples. The TEA is determined directly from sample data. It combines the best features of tail approximation and entropy optimization for structural safety analysis. Estimation of the distributions of basic random variables from sample data is a critical step in the analysis of structural safety and other random phenomena. Standard estimation methods may be simple, but results are sensitive to the necessary but arbitrary assumptions about distribution type. The method of minimum relative entropy is more objective and less sensitive to arbitrary assumptions, but requires optimization procedures and some of the results are mathematically intractable. The TEA method is a tractable and accurate combination, useful when a tail approximation is appropriate.
引用
收藏
页码:297 / 306
页数:10
相关论文
共 50 条
  • [41] ACCURACY OF SIMPLE APPROXIMATIONS FOR STANDARD NORMAL TAIL AREAS - REPLY
    FLEMING, NS
    AMERICAN STATISTICIAN, 1989, 43 (04): : 290 - 291
  • [42] A proof of the asymptotic equivalence of two-tail probability approximations
    Kolassa, John E.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2007, 36 (1-4) : 221 - 228
  • [43] FINITE-DIFFERENCE APPROXIMATIONS AND ENTROPY CONDITIONS FOR SHOCKS
    HARTEN, A
    HYMAN, JM
    LAX, PD
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1976, 29 (03) : 297 - 322
  • [44] Independent component analysis based on marginal entropy approximations
    Murillo-Fuentes, Juan J.
    Boloix-Tortosa, Rafael
    Hornillo-Mellado, Susana
    Zarzoso, Vicente
    Intell. Autom. Control Trends Princ. Appl. Proc. Biannual World Autom. Cong., 1600, (433-438):
  • [45] STABLE AND ENTROPY SATISFYING APPROXIMATIONS FOR TRANSONIC FLOW CALCULATIONS
    ENGQUIST, B
    OSHER, S
    MATHEMATICS OF COMPUTATION, 1980, 34 (149) : 45 - 75
  • [46] ERROR-BOUNDS IN MAXIMUM-ENTROPY APPROXIMATIONS
    LEASEBURG, MJ
    MEAD, LR
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (12) : 6009 - 6015
  • [47] Independent component analysis based on marginal entropy approximations
    Murillo-Fuentes, JJ
    Boloix-Tortosa, R
    Hornillo-Mellado, S
    Zarzoso, V
    INTELLIGENT AUTOMATIONS AND CONTROL: TRENDS PRINCIPLES, AND APPLICATIONS, VOL 16, 2004, 16 : 433 - 438
  • [48] Entropy Stable Finite Volume Approximations for Ideal Magnetohydrodynamics
    Derigs D.
    Gassner G.J.
    Walch S.
    Winters A.R.
    Jahresbericht der Deutschen Mathematiker-Vereinigung, 2018, 120 (3) : 153 - 219
  • [49] Differential entropy approximations and diffusive restoration of digital images
    Rodenas, F.
    Mayo, P.
    Ginestar, D.
    Verdu, G.
    International E-Conference on Computer Science 2005, 2005, 2 : 102 - 105
  • [50] Simple CVM-based approximations for the configurational entropy
    Tsatskis, I
    PHYSICA SCRIPTA, 2001, 63 (04): : 268 - 271