TOPOLOGICAL IMBEDDINGS OF SIMPLE ARCS AND CLOSED CURVES INTO E3

被引:0
|
作者
KELDYSH, LV
机构
来源
DOKLADY AKADEMII NAUK SSSR | 1969年 / 185卷 / 03期
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:513 / &
相关论文
共 50 条
  • [41] ROTATIONAL SURFACES GENERATED BY PLANAR CURVES IN E3 WITH DENSITY
    Altin, Mustafa
    Kazan, Ahmet
    Karadag, H. Bayram
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2019, 17 (03): : 311 - 328
  • [42] Magnetic curves corresponding to Killing magnetic fields in E3
    Druta-Romaniuc, Simona Luiza
    Munteanu, Marian Ioan
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (11)
  • [43] ULC PROPERTIES IN NEIGHBORHOODS OF EMBEDDED SURFACES AND CURVES IN E3
    CANNON, JW
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (01): : 31 - 73
  • [44] ASSOCIATED CURVES FROM A DIFFERENT POINT OF VIEW IN E3
    Senyurt, Suleyman
    Canli, Davut
    Ayvaci, Kebire Hilal
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (03): : 826 - 845
  • [45] Parallel Delaunay triangulation in E3:: make it simple
    Kohout, J
    Kolingerová, I
    VISUAL COMPUTER, 2003, 19 (7-8): : 532 - 548
  • [46] Parallel Delaunay triangulation in E3: make it simple
    Josef Kohout
    Ivana Kolingerová
    The Visual Computer, 2003, 19 : 532 - 548
  • [47] CONDITIONS FOR POLYGONAL-LINES AND POLYHEDRA IN E3 TO BE CLOSED
    AMINOV, YA
    MATHEMATICAL NOTES, 1985, 38 (1-2) : 587 - 592
  • [48] Surfaces Family with Bertrand Curves as Common Asymptotic Curves in Euclidean 3-Space E3
    Aldossary, Maryam T.
    Abdel-Baky, Rashad A.
    SYMMETRY-BASEL, 2023, 15 (07):
  • [49] Mannheim B-Curves in the Euclidean 3-Space E3
    Masal, Melek
    Azak, Ayse Z.
    KUWAIT JOURNAL OF SCIENCE, 2017, 44 (01) : 36 - 41
  • [50] The Helmholtz Equation in Domains Bounded by Closed Curves and Open Arcs
    Krutitskii, P. A.
    Krutitskaya, N. Ch.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 336 - 338