EXACT SOLUTION OF THE LINEAR NONAUTONOMOUS SYSTEM WITH THE SU(1,1) DYNAMICAL GROUP

被引:23
|
作者
WANG, SJ
ZUO, W
WEIGUNY, A
LI, FL
机构
[1] LANZHOU UNIV,DEPT MODERN PHYS,LANZHOU 730000,PEOPLES R CHINA
[2] ACAD SINICA,INST MODERN PHYS,LANZHOU 730000,PEOPLES R CHINA
[3] UNIV MUNSTER,INST THEORET PHYS 1,W-4400 MUNSTER,GERMANY
[4] XIAN JIAOTONG UNIV,DEPT PHYS,XIAN 710049,PEOPLES R CHINA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0375-9601(94)91034-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The exact solution and the invariant Cartan operator of the linear nonautonomous system with the SU (1,1) dynamical group are obtained by using the method of algebraic dynamics. The profound quantum-classical correspondence of the solutions is exhibited clearly: the quantum solutions of the system are determined by those of the corresponding classical equations and a continuous set of classical complex orbits corresponds to just one quantum solution. The nonadiabatic and adiabatic Berry phases are also calculated.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 50 条
  • [21] An algebraic SU(1,1) solution for the relativistic hydrogen atom
    Martínez-y-Romero, RP
    Núñez-Yépez, HN
    Salas-Brito, AL
    PHYSICS LETTERS A, 2005, 339 (3-5) : 259 - 268
  • [22] Applications of the group SU(1,1) for quantum computation and tomography
    Chiribella, G.
    D'Ariano, G. M.
    Perinotti, P.
    LASER PHYSICS, 2006, 16 (11) : 1572 - 1581
  • [23] Linear entropy and squeezing of the interaction between two quantum system described by su (1,1) and su(2) Lie group in presence of two external terms
    Abdalla, M. Sebawe
    Khalil, E. M.
    Obada, A. S. -F.
    Perina, J.
    Krepelka, J.
    AIP ADVANCES, 2017, 7 (01)
  • [24] SU(1,1) SQUEEZING OF SU(1,1) GENERALIZED COHERENT STATES
    BUZEK, V
    JOURNAL OF MODERN OPTICS, 1990, 37 (03) : 303 - 316
  • [25] SOLUTION TO 4-WAVE-MIXING IN THE REFLECTION GEOMETRY UTILIZING THE SU(1,1) GROUP SYMMETRY
    POWELL, AK
    FISH, DA
    HALL, TJ
    OPTICS COMMUNICATIONS, 1992, 89 (01) : 68 - 72
  • [26] The Lipkin model in many-fermion system as an example of the su(1,1) ⊗ su(1,1)-algebraic model
    Providencia, Constanca
    da Providencia, Joao
    Tsue, Yasuhiko
    Yamamura, Masatoshi
    PROGRESS OF THEORETICAL PHYSICS, 2006, 116 (01): : 87 - 105
  • [28] Berry phase in an effective SU(1,1) system
    Jin, YH
    Li, ZJ
    Liang, JQ
    MODERN PHYSICS LETTERS B, 2002, 16 (21): : 783 - 791
  • [29] SU(2) AND SU(1,1) INTERFEROMETERS
    YURKE, B
    MCCALL, SL
    KLAUDER, JR
    PHYSICAL REVIEW A, 1986, 33 (06): : 4033 - 4054
  • [30] Algebraic dynamical approach to the su(1,1)circle plus h(3) dynamical system: A generalized harmonic oscillator in an external field
    Zuo, W
    Wang, SJ
    JOURNAL DE PHYSIQUE I, 1997, 7 (06): : 749 - 758