Peptides based on cell-adhesive regions of fibronectin, Arg-Gly-Asp-Ser (RGDS), and vitronectin, Arg-Gly-Asp-Val (RGDV), were covalently bound to a polyurethane backbone via amide bonds. Nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) spectroscopies were used to monitor the reactions. The amount of grafted peptide was determined by amino acid analysis. X-ray photoelectron spectroscopy (XPS) suggested the presence of the grafted peptide at the polymer-air interface in vacuo. Dynamic contact angle analysis showed that, in water, the peptide-grafted polyurethane surfaces were more polar than the underivatized polyurethane indicating enrichment of peptide groups at the surface. The attachment and spreading of human umbilical vein endothelial cells (HUVECs) on the underivatized and peptide-grafted polyurethanes was investigated. The GRGDSY- and GRGDVY-grafted substrates supported cell adhesion and spreading even without serum in the culture medium. The GRGDVY-grafted substrate supported a larger number of adherent cells and a higher extent of cell spreading than the GRGDSY-grafted substrate. These RGD-containing peptide-grafted polyurethane copolymers may be useful in providing an easily prepared cell-adhesive substrate for various biomaterial applications.