NAVIER-STOKES ANALYSIS OF TURBOMACHINERY BLADE EXTERNAL HEAT-TRANSFER

被引:9
|
作者
AMERI, AA [1 ]
SOCKOL, PM [1 ]
GORLA, RSR [1 ]
机构
[1] NASA,LEWIS RES CTR,DIV INTERNAL FLUID MECH,CLEVELAND,OH 44135
关键词
D O I
10.2514/3.23488
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The two-dimensional, compressible, thin-layer Navier-Stokes and energy equations were solved numerically to obtain heat transfer rates on turbomachinary blades. The Baldwin-Lomax algebraic model and the q - omega low Reynolds number, two-equation model were used for modeling of turbulence. For the numerical solution of the governing equations a four-stage Runge-Kutta solver was employed. The turbulence model equations were solved using an implicit scheme. Numerical solutions are presented for two-dimensional flow within two vane cascades. The heat transfer results and the pressure distributions were compared with published experimental data. The agreement between the numerical calculations and the experimental values were found to be generally favorable. The position of transition from laminar to turbulent flow was also predicted accurately.
引用
收藏
页码:374 / 381
页数:8
相关论文
共 50 条