Series solutions of PT-symmetric Schrodinger equations

被引:3
|
作者
Bender, Carl M. [1 ]
Ford, C. [2 ]
Hassanpour, Nima [1 ]
Xia, B. [2 ]
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[2] Imperial Coll London, Dept Math, London SW7 2AZ, England
来源
JOURNAL OF PHYSICS COMMUNICATIONS | 2018年 / 2卷 / 02期
关键词
PT symmetry; numerical calculation of eigenvalues; eigenfunctions; matrix elements;
D O I
10.1088/2399-6528/aaa953
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Asimple and accurate numerical technique for finding eigenvalues, node structure, and expectation values of PT-symmetric potentials is devised. The approach involves expanding the solution to the Schrodinger equation in series involving powers of both the coordinate and the energy. The technique is designed to allow one to impose boundary conditions in PT-symmetric pairs of Stokes sectors. The method is illustrated by using many examples of PT-symmetric potentials in both the unbroken-and broken-PT-symmetric regions.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] PT-Symmetric Quantum Rabi Model: Solutions and Exceptional Points
    Li, Jiong
    Wang, Yi-Cheng
    Duan, Li-Wei
    Chen, Qing-Hu
    ADVANCED QUANTUM TECHNOLOGIES, 2025,
  • [42] Optical solitons of the (1+1)-dimensional higher-order nonlinear Schrodinger equations with PT-symmetric potentials
    Xu, Bijun
    Yan, Mengyao
    Sun, Zhichao
    Tong, Xin
    OPTIK, 2019, 181 : 1019 - 1022
  • [43] Quasi PT-Symmetric Edge-Emitting Lasers Outperform PT-Symmetric Ones
    Olyaeefar, Babak
    Seker, Enes
    El-Ganainy, Ramy
    Demir, Abdullah
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2025, 31 (02)
  • [44] Position-dependent effective mass Dirac equations with PT-symmetric and non-PT-symmetric potentials
    Jia, Chun-Sheng
    Dutra, A. de Souza
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (38): : 11877 - 11887
  • [45] Compactons in PT-symmetric generalized Korteweg-de Vries equations
    Bender, Carl M.
    Cooper, Fred
    Khare, Avinash
    Mihaila, Bogdan
    Saxena, Avadh
    PRAMANA-JOURNAL OF PHYSICS, 2009, 73 (02): : 375 - 385
  • [46] PT-symmetric PINN for integrable nonlocal equations: Forward and inverse problems
    Peng, Wei-Qi
    Chen, Yong
    CHAOS, 2024, 34 (04)
  • [47] Necklaces of PT-symmetric dimers
    D.J.NODAL STEVENS
    BENJAMíN JARAMILLO áVILA
    B.M.RODRíGUEZ-LARA
    Photonics Research , 2018, (05) : 19 - 25
  • [48] PT-symmetric laser absorber
    Longhi, Stefano
    PHYSICAL REVIEW A, 2010, 82 (03):
  • [49] Integrability of PT-symmetric dimers
    Pickton, J.
    Susanto, H.
    PHYSICAL REVIEW A, 2013, 88 (06):
  • [50] PT-symmetric quantum mechanics
    Bender, CM
    Boettcher, S
    Meisinger, PN
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) : 2201 - 2229