Series solutions of PT-symmetric Schrodinger equations

被引:3
|
作者
Bender, Carl M. [1 ]
Ford, C. [2 ]
Hassanpour, Nima [1 ]
Xia, B. [2 ]
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[2] Imperial Coll London, Dept Math, London SW7 2AZ, England
来源
JOURNAL OF PHYSICS COMMUNICATIONS | 2018年 / 2卷 / 02期
关键词
PT symmetry; numerical calculation of eigenvalues; eigenfunctions; matrix elements;
D O I
10.1088/2399-6528/aaa953
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Asimple and accurate numerical technique for finding eigenvalues, node structure, and expectation values of PT-symmetric potentials is devised. The approach involves expanding the solution to the Schrodinger equation in series involving powers of both the coordinate and the energy. The technique is designed to allow one to impose boundary conditions in PT-symmetric pairs of Stokes sectors. The method is illustrated by using many examples of PT-symmetric potentials in both the unbroken-and broken-PT-symmetric regions.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Global Existence of Solutions to Coupled PT-Symmetric Nonlinear Schrodinger Equations
    Pelinovsky, Dmitry E.
    Zezyulin, Dmitry A.
    Konotop, Vladimir V.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (11) : 3920 - 3931
  • [2] PT-symmetric effective mass Schrodinger equations
    Roy, B.
    Roy, P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (50): : 11019 - 11025
  • [3] Spectra of PT-symmetric fractional Schrodinger equations with multiple quantum wells
    Solaimani, M.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2020, 19 (04) : 1416 - 1425
  • [4] Position-dependent effective mass Schrodinger equations for PT-symmetric potentials
    Jia, Chun-Sheng
    Yi, Liang-Zhong
    Sun, Yu
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 43 (02) : 435 - 446
  • [5] Asymptotically vanishing PT-symmetric potentials and negative-mass Schrodinger equations
    Znojil, Miloslav
    Siegl, Petr
    Levai, Geza
    PHYSICS LETTERS A, 2009, 373 (22) : 1921 - 1924
  • [6] Stability analysis of multiple solutions of nonlinear Schrodinger equation with PT-symmetric potential
    Ghosh, Niladri
    Das, Amiya
    Nath, Debraj
    NONLINEAR DYNAMICS, 2023, 111 (02) : 1589 - 1605
  • [7] Solutions of the Schrodinger Equation for PT-Symmetric Coupled Quintic Potentials in Two Dimensions
    Savita
    Chand, Fakir
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (03) : 419 - 422
  • [8] Nonstandard bilinearization and interaction phenomenon for PT-symmetric coupled nonlocal nonlinear Schrodinger equations
    Yu, Fajun
    Fan, Rui
    APPLIED MATHEMATICS LETTERS, 2020, 103
  • [9] Darboux transformation and analytic solutions of the discrete PT-symmetric nonlocal nonlinear Schrodinger equation
    Xu, Tao
    Li, Hengji
    Zhang, Hongjun
    Li, Min
    Lan, Sha
    APPLIED MATHEMATICS LETTERS, 2017, 63 : 88 - 94
  • [10] On the Schrodinger operator with a periodic PT-symmetric matrix potential
    Veliev, O. A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (10)