AN ELEMENTARY APPROACH TO LOWER BOUNDS IN GEOMETRIC DISCREPANCY

被引:9
|
作者
CHAZELLE, B
MATOUSEK, J
SHARIR, M
机构
[1] TEL AVIV UNIV,SCH MATH SCI,IL-69978 RAMAT AVIV,ISRAEL
[2] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
[3] CHARLES UNIV,DEPT APPL MATH,CR-11800 PRAGUE 1,CZECH REPUBLIC
关键词
D O I
10.1007/BF02574050
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For each d greater than or equal to 2, it is possible to place n points in d-space so that, given any two-coloring of the points, a half-space exists within which one color outnumbers the other by as much as Cn(1/2-1/2d), for some constant c > 0 depending on d. This result was proven in a slightly weaker form by Beck and the bound was later tightened by Alexander. It was recently shown to be asymptotically optimal by MatouSek. We present a proof of the lower bound, which is based on Alexander's technique but is technically simpler and more accessible. We present three variants of the proof, for three different cases, to provide more intuitive insight into the ''large-discrepancy'' phenomenon. We also give geometric and probabilistic interpretations of the technique.
引用
收藏
页码:363 / 381
页数:19
相关论文
共 50 条
  • [1] A geometric approach to quantum circuit lower bounds
    Nielsen, MA
    [J]. QUANTUM INFORMATION & COMPUTATION, 2006, 6 (03) : 213 - 262
  • [2] A genetic algorithm approach to estimate lower bounds of the star discrepancy
    Shah, Manan
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2010, 16 (3-4): : 379 - 398
  • [3] A spectral approach to lower bounds with applications to geometric searching
    Chazelle, B
    [J]. SIAM JOURNAL ON COMPUTING, 1998, 27 (02) : 545 - 556
  • [4] Information Geometric Approach to Bayesian Lower Error Bounds
    Kumar, M. Ashok
    Mishra, Kumar Vijay
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 746 - 750
  • [5] Upper and Lower Bounds for Matrix Discrepancy
    Xie, Jiaxin
    Xu, Zhiqiang
    Zhu, Ziheng
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (06)
  • [6] Upper and Lower Bounds for Matrix Discrepancy
    Jiaxin Xie
    Zhiqiang Xu
    Ziheng Zhu
    [J]. Journal of Fourier Analysis and Applications, 2022, 28
  • [7] A new elementary geometric approach to option pricing bounds in discrete time models
    Braouezec, Yann
    Grunspan, Cyril
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 249 (01) : 270 - 280
  • [8] LOWER BOUNDS FOR P(CHI-3 + KAPPA), AN ELEMENTARY APPROACH
    BUCHMANN, J
    GYORY, K
    MIGNOTTE, M
    TZANAKIS, N
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 1991, 38 (1-2): : 145 - 163
  • [9] Lower Bounds on Strip Discrepancy for Nonatomic Colorings
    Allen D. Rogers
    [J]. Monatshefte für Mathematik, 2000, 130 : 311 - 328
  • [10] Lower bounds on strip discrepancy for nonatomic colorings
    Rogers, AD
    [J]. MONATSHEFTE FUR MATHEMATIK, 2000, 130 (04): : 311 - 328