Upper and Lower Bounds for Matrix Discrepancy

被引:0
|
作者
Jiaxin Xie
Zhiqiang Xu
Ziheng Zhu
机构
[1] Beihang University,LMIB of the Ministry of Education, School of Mathematical Sciences
[2] Chinese Academy of Sciences,LSEC, Inst. Comp. Math., Academy of Mathematics and System Science
[3] University of Chinese Academy of Sciences,School of Mathematical Sciences
关键词
Matrix discrepancy; Tight frame; Interlacing polynomials; Kadison–Singer problem; 11K38; 42C15;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to study the matrix discrepancy problem. Assume that ξ1,…,ξn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi _1,\ldots ,\xi _n$$\end{document} are independent scalar random variables with finite support and u1,…,un∈Cd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{u}}_1,\ldots ,{\textbf{u}}_n\in {\mathbb C}^d$$\end{document}. Let C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal C}_0$$\end{document} be the minimal constant for which the following holds: Disc(u1u1∗,…,unun∗;ξ1,…,ξn):=minε1∈S1,…,εn∈Sn‖∑i=1nE[ξi]uiui∗-∑i=1nεiuiui∗‖≤C0·σ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \textrm{Disc}({\textbf{u}}_1{\textbf{u}}_1^*,\ldots ,{\textbf{u}}_n{\textbf{u}}_n^*; \xi _1,\ldots ,\xi _n)\,\,:=\,\,\min _{\varepsilon _1\in {\mathcal S}_1,\ldots ,\varepsilon _n\in {\mathcal S}_n}\bigg \Vert \sum _{i=1}^n\mathbb {E}[\xi _i]{\textbf{u}}_i{\textbf{u}}_i^*-\sum _{i=1}^n\varepsilon _i{\textbf{u}}_i{\textbf{u}}_i^*\bigg \Vert \le {\mathcal C}_0\cdot \sigma , \end{aligned}$$\end{document}where σ2=‖∑i=1nVar[ξi](uiui∗)2‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^2 = \big \Vert \sum _{i=1}^n \text{ Var }[\xi _i]({\textbf{u}}_i{\textbf{u}}_i^*)^2\big \Vert $$\end{document} and Sj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal S}_j$$\end{document} denotes the support of ξj,j=1,…,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi _j, j=1,\ldots ,n$$\end{document}. Motivated by the technology developed by Bownik, Casazza, Marcus, and Speegle [7], we prove C0≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal C}_0\le 3$$\end{document}. This improves Kyng, Luh and Song’s method with which C0≤4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal C}_0\le 4$$\end{document} [21]. For the case where {ui}i=1n⊂Cd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{\textbf{u}}_i\}_{i=1}^n\subset {\mathbb C}^d$$\end{document} is a unit-norm tight frame with n≤2d-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ n\le 2d-1$$\end{document} and ξ1,…,ξn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi _1,\ldots ,\xi _n$$\end{document} are independent Rademacher random variables, we present the exact value of Disc(u1u1∗,…,unun∗;ξ1,…,ξn)=nd·σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Disc}({\textbf{u}}_1{\textbf{u}}_1^*,\ldots ,{\textbf{u}}_n{\textbf{u}}_n^*; \xi _1,\ldots ,\xi _n)=\sqrt{\frac{n}{d}}\cdot \sigma $$\end{document}, which implies C0≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal C}_0\ge \sqrt{2}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Upper and Lower Bounds for Matrix Discrepancy
    Xie, Jiaxin
    Xu, Zhiqiang
    Zhu, Ziheng
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (06)
  • [2] UPPER AND LOWER BOUNDS FOR MATRIX-ELEMENTS
    TIPPING, RH
    [J]. JOURNAL OF MOLECULAR SPECTROSCOPY, 1978, 73 (03) : 400 - 404
  • [4] Upper and lower bounds for the Perron root of a nonnegative matrix
    Melman, A.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (02): : 171 - 181
  • [5] Upper Bounds in Classical Discrepancy Theory
    Chen, William
    Skriganov, Maxim
    [J]. PANORAMA OF DISCREPANCY THEORY, 2014, 2107 : 3 - 69
  • [6] UPPER AND LOWER BOUNDS FOR THE SOLUTION TO THE DISCRETE LYAPUNOV MATRIX EQUATION
    MORI, T
    FUKUMA, N
    KUWAHARA, M
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1982, 36 (05) : 889 - 892
  • [7] Upper and Lower Bounds for Ranks of the Matrix Expression X - XAX
    Xiong, Zhiping
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [8] Upper and lower bounds for the solution of the Lyapunov matrix differential equation
    Liu, Jianzhou
    Zhang, Ze
    Zeng, Wenlong
    Tang, Fuying
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2024,
  • [9] Upper and lower matrix bounds of the solution for the discrete Lyapunov equation
    Lee, CH
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (09) : 1338 - 1341
  • [10] Sequences of lower and upper bounds for the spectral radius of a nonnegative matrix
    Adam, Maria
    Oikonomou, Iro
    Aretaki, Aikaterini
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 667 : 165 - 191