THEOREM OF LIVSIC TYPE FOR DISPERSED BILLIARDS

被引:2
|
作者
EFIMOV, KM
机构
关键词
D O I
10.1007/BF01015790
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Piecewise-Holder functions on the phase space of a dispersed billiard are considered. It is shown that if the integral of such a function around any periodic trajectory is zero then the function itself is cohomologous to zero.
引用
收藏
页码:122 / 131
页数:10
相关论文
共 50 条
  • [1] A Livsic type theorem for germs of analytic diffeomorphisms
    Navas, Andres
    Ponce, Mario
    [J]. NONLINEARITY, 2013, 26 (01) : 297 - 305
  • [2] On a theorem of Livsic
    Aleman, Alexandru
    Martin, R. T. W.
    Ross, William T.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (04) : 999 - 1048
  • [3] LIVSIC THEOREM FOR BANACH RINGS
    Grabarnik, Genady Ya.
    Guysinsky, Misha
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (08): : 4379 - 4390
  • [4] Livsic theorem for diffeomorphism cocycles
    Avila, Artur
    Kocsard, Alejandro
    Liu, Xiao-Chuan
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2018, 28 (04) : 943 - 964
  • [5] Livsic Theorem for matrix cocycles
    Kalinin, Boris
    [J]. ANNALS OF MATHEMATICS, 2011, 173 (02) : 1025 - 1042
  • [6] Livsic's theorem for semisimple Lie groups
    Nicol, M
    Pollicott, M
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2001, 21 : 1501 - 1509
  • [7] MARKOV PARTITIONS FOR DISPERSED BILLIARDS
    BUNIMOVICH, LA
    SINAI, YG
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 78 (02) : 247 - 280
  • [8] Livsic theorem for low-dimensional diffeomorphism cocycles
    Kocsard, Alejandro
    Potrie, Rafael
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2016, 91 (01) : 39 - 64
  • [9] Livsic Theorem for Matrix Cocycles Over An Axiom A Flow
    Lian, Zeng
    Zhang, Jianhua
    [J]. COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 10 (04) : 681 - 704
  • [10] Billiards and the five distance theorem
    Florek, Jan
    [J]. ACTA ARITHMETICA, 2009, 139 (03) : 229 - 239