Livsic Theorem for matrix cocycles

被引:69
|
作者
Kalinin, Boris [1 ]
机构
[1] Univ S Alabama, Mobile, AL 36688 USA
关键词
COHOMOLOGY; REGULARITY; RIGIDITY; SYSTEMS;
D O I
10.4007/annals.2011.173.2.11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the Livsic Theorem for arbitrary GL(m, R) cocycles. We consider a hyperbolic dynamical system f : X -> X and a Holder continuous function A : X -> GL(m, R). We show that if A has trivial periodic data, i.e. A(f(n-1) p) ... A(fp)A(p) = Id for each periodic point p = f(n)p, then there exists a Holder continuous function C : X -> GL(m, R) satisfying A(x) = C(fx)C(x)(-1) for all x is an element of X. The main new ingredients in the proof are results of independent interest on relations between the periodic data, Lyapunov exponents, and uniform estimates on growth of products along orbits for an arbitrary Holder function A.
引用
收藏
页码:1025 / 1042
页数:18
相关论文
共 50 条
  • [1] Livsic Theorem for Matrix Cocycles Over An Axiom A Flow
    Lian, Zeng
    Zhang, Jianhua
    [J]. COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 10 (04) : 681 - 704
  • [2] Livsic theorem for diffeomorphism cocycles
    Avila, Artur
    Kocsard, Alejandro
    Liu, Xiao-Chuan
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2018, 28 (04) : 943 - 964
  • [3] Livsic theorem for matrix cocycles over nonuniformly hyperbolic systems
    Zou, Rui
    Cao, Yongluo
    [J]. STOCHASTICS AND DYNAMICS, 2019, 19 (02)
  • [4] Livsic theorem for low-dimensional diffeomorphism cocycles
    Kocsard, Alejandro
    Potrie, Rafael
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2016, 91 (01) : 39 - 64
  • [5] The Livsic periodic point theorem for non-abelian cocycles
    Parry, W
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 : 687 - 701
  • [6] Remarks on Livsic' theory for nonabelian cocycles
    Schmidt, K
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 : 703 - 721
  • [7] Livsic theorems for Banach cocycles: Existence and regularity
    Zou, Rui
    Cao, Yongluo
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (05)
  • [8] On a theorem of Livsic
    Aleman, Alexandru
    Martin, R. T. W.
    Ross, William T.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (04) : 999 - 1048
  • [9] LIVSIC THEOREM FOR BANACH RINGS
    Grabarnik, Genady Ya.
    Guysinsky, Misha
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (08) : 4379 - 4390
  • [10] Livšic Theorem for Matrix Cocycles Over An Axiom A Flow
    Zeng Lian
    Jianhua Zhang
    [J]. Communications in Mathematics and Statistics, 2022, 10 : 681 - 704