Spectral geometry for quantum spacetime

被引:1
|
作者
Lizzi, Fedele [1 ,2 ,3 ]
机构
[1] Univ Naples Federico II, Dipartimento Fis, Naples, Italy
[2] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy
[3] Univ Barcelona, Dept Estruct & Constituents Mat, Inst Ciencies Cosmos, Catalonia, Spain
关键词
D O I
10.1393/ncc/i2015-15165-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
I make some considerations on the quantization of spacetime from a spectral point of view. The considerations range from the renormalization flow, to the standard model, to a new phase of spacetime.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Euclidean quantum gravity in light of spectral geometry
    Esposito, G
    SPECTRAL GEOMETRY OF MANIFOLDS WITH BOUNDARY AND DECOMPOSITION OF MANIFOLDS, 2005, 366 : 23 - 42
  • [42] Singularities and the geometry of spacetime
    Hawking, Stephen
    EUROPEAN PHYSICAL JOURNAL H, 2014, 39 (04): : 413 - 503
  • [43] Singularities and the geometry of spacetime
    Stephen Hawking
    The European Physical Journal H, 2014, 39 : 413 - 503
  • [44] Plane Geometry in Spacetime
    Mermin, N. David
    QUANTUM REALITY, RELATIVISTIC CAUSALITY, AND CLOSING THE EPISTEMIC CIRCLE: ESSAYS IN HONOUR OF ABNER SHIMONY, 2009, 73 : 327 - 347
  • [45] Spacetime, Geometry and Gravitation
    Szenkovits, Ferenc
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2010, 55 (04): : 264 - 264
  • [46] Spacetime and Euclidean geometry
    Brill, Dieter
    Jacobson, Ted
    GENERAL RELATIVITY AND GRAVITATION, 2006, 38 (04) : 643 - 651
  • [47] Thermal dimension of quantum spacetime: Comparison with the spectral dimension and application in cosmology
    Brighenti, Francesco
    Amelino-Camelia, Giovanni
    Gubitosi, Giulia
    Magueijo, Joao
    Santos, Grasiele
    15TH MARCEL GROSSMANN MEETING, PT A, 2022, : 1983 - 1988
  • [48] Noncommutative Riemannian geometry from quantum spacetime generated by twisted Poincare group
    Aguillon, Cesar A.
    Much, Albert
    Rosenbaum, Marcos
    David Vergara, J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (11)
  • [49] Quantum mechanics without spacetime II: Noncommutative geometry and the free point particle
    Singh, TP
    GENERAL RELATIVITY AND GRAVITATION, 2003, 35 (05) : 869 - 876
  • [50] (Quantum) spacetime as a statistical geometry of fuzzy lumps and the connection with random metric spaces
    Requardt, M
    Roy, S
    CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (15) : 3039 - 3057