A RIGOROUS STABILITY RESULT FOR THE VLASOV-POISSON SYSTEM IN 3 DIMENSIONS

被引:35
|
作者
BATT, J [1 ]
REIN, G [1 ]
机构
[1] UNIV MUNICH,INST MATH,W-8000 MUNICH 2,GERMANY
来源
关键词
D O I
10.1007/BF01759319
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proven that in a neutral two-component plasma with space homogeneous positively charged background, which is governed by the Vlasov-Poisson system and for which Poisson's equation is considered on a cube in R3 with periodic boundary conditions, the space homogeneous stationary solutions g with energy gradient partial derivative g/partial derivative epsilon less-than-or-equal-to 0 and compact support are (nonlinearly) stable in the L1-norm with respect to weak solutions of the initial value problem.
引用
收藏
页码:133 / 154
页数:22
相关论文
共 50 条
  • [21] Traveling waves of the Vlasov-Poisson system
    Suzuki, Masahiro
    Takayama, Masahiro
    Zhang, Katherine Zhiyuan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 428 : 230 - 290
  • [22] The Vlasov-Poisson System with Radiation Damping
    M. Kunze
    A.D. Rendall
    Annales Henri Poincaré, 2001, 2 : 857 - 886
  • [23] Gravitational Collapse and the Vlasov-Poisson System
    Rein, Gerhard
    Taegert, Lukas
    ANNALES HENRI POINCARE, 2016, 17 (06): : 1415 - 1427
  • [24] ON THE STATISTICAL SOLUTIONS OF VLASOV-POISSON EQUATIONS IN 2 DIMENSIONS
    PULVIRENTI, M
    WICK, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1985, 36 (04): : 508 - 519
  • [25] A perturbation method for the Vlasov-Poisson system
    Lundberg, J
    Fla, T
    JOURNAL OF PLASMA PHYSICS, 1998, 60 : 181 - 192
  • [26] Modified scattering for the Vlasov-Poisson system
    Choi, Sun-Ho
    Kwon, Soonsik
    NONLINEARITY, 2016, 29 (09) : 2755 - 2774
  • [27] Gevrey regularity for the Vlasov-Poisson system
    Ruiz, Renato Velozo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (04): : 1145 - 1165
  • [28] The hydrodynamical limit of the Vlasov-Poisson system
    Dietz, C
    Sander, V
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 1999, 28 (05): : 499 - 520
  • [29] Uniqueness and stability for the Vlasov-Poisson system with spatial density in Orlicz spaces
    Holding, Thomas
    Miot, Evelyne
    MATHEMATICAL ANALYSIS IN FLUID MECHANICS: SELECTED RECENT RESULTS, 2018, 710 : 145 - 162
  • [30] NONLINEAR STABILITY FOR THE VLASOV-POISSON SYSTEM - THE ENERGY-CASIMIR METHOD
    REIN, G
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1994, 17 (14) : 1129 - 1140